Solveeit Logo

Question

Question: A ball rolls off the top of a stairway with a horizontal velocity $u = \sqrt{x}$ m/s. The steps are ...

A ball rolls off the top of a stairway with a horizontal velocity u=xu = \sqrt{x} m/s. The steps are 0.2 m high and 0.2 m wide. The ball just hits the edge of the 4th step. The value of xx is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

The ball follows projectile motion. To hit the edge of the 4th step, it must cover a horizontal distance of (41)×0.2=0.6(4-1) \times 0.2 = 0.6 m and fall a vertical distance of (41)×0.2=0.6(4-1) \times 0.2 = 0.6 m.

Using the vertical motion equation: H=12gt2H = \frac{1}{2}gt^2 0.6=12×10×t20.6 = \frac{1}{2} \times 10 \times t^2 t2=0.65=325t^2 = \frac{0.6}{5} = \frac{3}{25} t=35t = \frac{\sqrt{3}}{5} s.

Using the horizontal motion equation: R=utR = ut 0.6=u×350.6 = u \times \frac{\sqrt{3}}{5} u=0.6×53=33=3u = \frac{0.6 \times 5}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} m/s.

Given u=xu = \sqrt{x}, we have x=3\sqrt{x} = \sqrt{3}, so x=3x = 3.