Solveeit Logo

Question

Question: A ball of mass m is dropped from a cliff of height H. The ratio of its kinetic energy to the potenti...

A ball of mass m is dropped from a cliff of height H. The ratio of its kinetic energy to the potential energy when it is fallen through a height 34H\frac { 3 } { 4 } His:

A

3 : 4

B

4 : 3

C

1 : 3

D

3 : 1

Answer

1 : 3

Explanation

Solution

Total mechanical energy at height, H

Let be velocity of the ball at height h (=34H)\left( = \frac { 3 } { 4 } \mathrm { H } \right)

total mechanical energy at height h,

Eh=mgh+12mvh2\mathrm { E } _ { \mathrm { h } } = \mathrm { mgh } + \frac { 1 } { 2 } \mathrm { mv } _ { \mathrm { h } } ^ { 2 }

According to law of conservation of mechanical energy.

EH=EhE _ { H } = E _ { h }

mgH=mgh+12mvh2\mathrm { mgH } = \mathrm { mgh } + \frac { 1 } { 2 } \mathrm { mv } _ { \mathrm { h } } ^ { 2 }

Required ratio of kinetic energy to potential energy at height h is

KhVh=12mvh2mgh=12 m2 g(Hh)mgh\frac { \mathrm { K } _ { \mathrm { h } } } { \mathrm { V } _ { \mathrm { h } } } = \frac { \frac { 1 } { 2 } \mathrm { mv } _ { \mathrm { h } } ^ { 2 } } { \mathrm { mgh } } = \frac { \frac { 1 } { 2 } \mathrm {~m} 2 \mathrm {~g} ( \mathrm { H } - \mathrm { h } ) } { \mathrm { mgh } }

=Hhh=(Hh1)= \frac { \mathrm { H } - \mathrm { h } } { \mathrm { h } } = \left( \frac { \mathrm { H } } { \mathrm { h } } - 1 \right)

=(431)= \left( \frac { 4 } { 3 } - 1 \right) (h=34H)\left( \therefore \mathrm { h } = \frac { 3 } { 4 } \mathrm { H } \right)

=13= \frac { 1 } { 3 }