Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A ball moves one-fourth (1th 4)\left(\frac{1^{\text {th }}}{4}\right) of a circle of radius RR in time TT. Let v1v_{1} and v2v_{2} be the magnitudes of mean speed and mean velocity vector. The ratio v1v2\frac{v_{1}}{v_{2}} will be

A

π2\frac{\pi}{2}

B

3π\frac{3}{\pi}

C

23π\frac{2}{\sqrt{3} \pi}

D

π22\frac{\pi}{2 \sqrt{2}}

Answer

π22\frac{\pi}{2 \sqrt{2}}

Explanation

Solution

Mean speed of a moving body,
vrms= total distance  total time taken v_{ rms }=\frac{\text { total distance }}{\text { total time taken }}
Mean velocity vector for a moving body,
vvv= total displacement  total time taken v_{ vv }=\frac{\text { total displacement }}{\text { total time taken }}
A ball moving in a circular arc is shown in the figure below,

Here, vrms=2πR4×1T=v1v_{ rms }=\frac{2 \pi R}{4} \times \frac{1}{T}=v_{1}
Similarly, vvv=2RT=v2v_{ vv }=\frac{\sqrt{2} R}{T}=v_{2}
Hence, v1v2=π22\frac{v_{1}}{v_{2}}=\frac{\pi}{2 \sqrt{2}}