Solveeit Logo

Question

Question: A ball is thrown up with a certain velocity so that it reaches a height h. Find the ratio of the tim...

A ball is thrown up with a certain velocity so that it reaches a height h. Find the ratio of the times in which it is a h/3.

A

212+1\frac{\sqrt{2} - 1}{\sqrt{2} + 1}

B

323+2\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}

C

313+1\frac{\sqrt{3} - 1}{\sqrt{3} + 1}

D

13\frac{1}{3}

Answer

323+2\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}

Explanation

Solution

u2 = 2gh; h/3 = 2gh\sqrt{2gh} t – 1/2 gt2 or gt2 – 2

2gh\sqrt{2gh}t + 2h/3 = 0

t = 22gh±8gh(8gh)/32g\frac{2\sqrt{2gh} \pm \sqrt{8gh - (8gh)/3}}{2g}

or t1t2=22gh22gh/3(31)22gh+22gh/3(31)\frac{t_{1}}{t_{2}} = \frac{2\sqrt{2gh} - 2\sqrt{2gh/3}\left( \sqrt{3 - 1} \right)}{2\sqrt{2gh} + 2\sqrt{2gh/3}\left( \sqrt{3 - 1} \right)}

= 3(31)3+(31)\frac{\sqrt{3} - \left( \sqrt{3 - 1} \right)}{\sqrt{3} + \left( \sqrt{3 - 1} \right)} = 323+2\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}