Solveeit Logo

Question

Question: A ball is thrown from the top of a tower with an initial velocity of 10 m s<sup>-1</sup> at an angle...

A ball is thrown from the top of a tower with an initial velocity of 10 m s-1 at an angle of 30o30^{o}with the horizontal. If it hits the ground of a distance of 17.3 m from the back of the tower, the height of the tower is

(Take g = 10 m s-2).

A

5 m

B

20 m

C

15 m

D

10 m

Answer

10 m

Explanation

Solution

Here, θ=30,u=10ms1\theta = 30{^\circ},u = 10ms^{- 1}

R=17.3m,g=10ms2R = 17.3m,g = 10ms^{- 2}

For horizontal motions, R=ucosθtR = u\cos\theta t

Or t=Rucosθ=17.310cos30=17.3×210×3=17.3×210×1.73=2t = \frac { R } { u \cos \theta } = \frac { 17.3 } { 10 \cos 30 ^ { \circ } } = \frac { 17.3 \times 2 } { 10 \times \sqrt { 3 } } = \frac { 17.3 \times 2 } { 10 \times 1.73 } = 2

For vertical motions, y =usinθt12gt2= u\sin\theta t - \frac{1}{2}gt^{2}

=10sin30×212×10×22= 10\sin 30{^\circ} \times 2 - \frac{1}{2} \times 10 \times 2^{2}

= 10- 20 = -10 m.

Height of tower = 10m.