Solveeit Logo

Question

Physics Question on Motion in a plane

A ball is thrown from a point AA with a speed uu at an angle θ\theta with the horizontal. If gg is the acceleration due to gravity, the total time taken for it to reach a point BB on the same horizontal plane is

A

2usinθg\frac{2u \sin \, \theta}{g}

B

usin2θg\frac{u \sin^2 \, \theta}{g}

C

2u2sinθg\frac{2u^2 \sin \, \theta}{g}

D

usinθg\frac{u \sin \, \theta}{g}

Answer

2usinθg\frac{2u \sin \, \theta}{g}

Explanation

Solution

A ball is thrown from a point A

Given, initial velocity = uu,
projection angle = θ\theta
Let time taken to reach at BB is TfT_f here y=0y = 0
Using kinematic equation along yy-axis
y=uyTf+12ayTf2y = u_y T_f + \frac{1}{2} a_y T^2_f
0=usinθTf+12(g)Tf20 = u\, \sin\, \theta \, T_f + \frac{1}{2} ( -g)T_f^2
Tf=2usinθg\Rightarrow \:\:\:\: T_f = \frac{2 u \, \sin \, \theta}{g}
So, the correct option is (A) : 2usinθg\frac{2u \sin \, \theta}{g}