Solveeit Logo

Question

Question: A ball is thrown at speed $v$ from zero height on level ground. Let $\theta_0$ be the angle at which...

A ball is thrown at speed vv from zero height on level ground. Let θ0\theta_0 be the angle at which the ball should be thrown so that the length of the trajectory is maximum. If θ0\theta_0 satisfies

lnα+sinθ0βcosθ0=γsinθ0ln \left| \frac{\alpha + sin \theta_0}{\beta cos \theta_0} \right| = \frac{\gamma}{sin \theta_0}

then find the value of α+β+γ2\alpha + \beta + \gamma^2.

{you can use 1+x2dx=x21+x2+12{n}x+1+x2+C}\left\{ \text{you can use } \int \sqrt{1 + x^2} dx = \frac{x}{2} \sqrt{1 + x^2} + \frac{1}{2} \{n\} |x + \sqrt{1 + x^2}| + C \right\}

Answer

3

Explanation

Solution

To find the angle θ0\theta_0 for maximum trajectory length, we first need to derive the expression for the trajectory length LL.

1. Parametric Equations of Trajectory:

For a projectile launched with initial speed vv at an angle θ\theta from the horizontal, the position coordinates at time tt are:

x(t)=(vcosθ)tx(t) = (v \cos \theta) t

y(t)=(vsinθ)t12gt2y(t) = (v \sin \theta) t - \frac{1}{2} g t^2

The horizontal and vertical components of velocity are:

dxdt=vcosθ\frac{dx}{dt} = v \cos \theta

dydt=vsinθgt\frac{dy}{dt} = v \sin \theta - gt

The ball lands when y(t)=0y(t) = 0 (excluding t=0t=0).

(vsinθ)t12gt2=0(v \sin \theta) t - \frac{1}{2} g t^2 = 0

t(vsinθ12gt)=0t \left( v \sin \theta - \frac{1}{2} g t \right) = 0

The time of flight T=2vsinθgT = \frac{2v \sin \theta}{g}.

2. Trajectory Length Formula:

The length of the trajectory LL is given by the arc length integral:

L=0T(dxdt)2+(dydt)2dtL = \int_0^T \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt

L=0T(vcosθ)2+(vsinθgt)2dtL = \int_0^T \sqrt{(v \cos \theta)^2 + (v \sin \theta - gt)^2} dt

L=0Tv2cos2θ+v2sin2θ2vgtsinθ+g2t2dtL = \int_0^T \sqrt{v^2 \cos^2 \theta + v^2 \sin^2 \theta - 2vg t \sin \theta + g^2 t^2} dt

L=0Tv22vgtsinθ+g2t2dtL = \int_0^T \sqrt{v^2 - 2vg t \sin \theta + g^2 t^2} dt

To simplify the integral, let's make a substitution. Notice that the term inside the square root can be written as (vcosθ)2+(gtvsinθ)2(v \cos \theta)^2 + (gt - v \sin \theta)^2.

Let X=gtvsinθvcosθX = \frac{gt - v \sin \theta}{v \cos \theta}. Then dX=gvcosθdtdX = \frac{g}{v \cos \theta} dt, so dt=vcosθgdXdt = \frac{v \cos \theta}{g} dX.

Now, change the limits of integration for XX:

When t=0t=0, X1=0vsinθvcosθ=tanθX_1 = \frac{0 - v \sin \theta}{v \cos \theta} = -\tan \theta.

When t=T=2vsinθgt=T = \frac{2v \sin \theta}{g}, X2=g(2vsinθg)vsinθvcosθ=2vsinθvsinθvcosθ=vsinθvcosθ=tanθX_2 = \frac{g \left(\frac{2v \sin \theta}{g}\right) - v \sin \theta}{v \cos \theta} = \frac{2v \sin \theta - v \sin \theta}{v \cos \theta} = \frac{v \sin \theta}{v \cos \theta} = \tan \theta.

Substituting these into the integral for LL:

L=tanθtanθ(vcosθ)2+(vcosθX)2(vcosθg)dXL = \int_{-\tan \theta}^{\tan \theta} \sqrt{(v \cos \theta)^2 + (v \cos \theta \cdot X)^2} \left(\frac{v \cos \theta}{g}\right) dX

L=tanθtanθvcosθ1+X2(vcosθg)dXL = \int_{-\tan \theta}^{\tan \theta} v \cos \theta \sqrt{1 + X^2} \left(\frac{v \cos \theta}{g}\right) dX

L=v2cos2θgtanθtanθ1+X2dXL = \frac{v^2 \cos^2 \theta}{g} \int_{-\tan \theta}^{\tan \theta} \sqrt{1 + X^2} dX

Since 1+X2\sqrt{1+X^2} is an even function, we can write:

L=2v2cos2θg0tanθ1+X2dXL = \frac{2v^2 \cos^2 \theta}{g} \int_0^{\tan \theta} \sqrt{1 + X^2} dX

3. Evaluate the Integral:

Using the given formula 1+x2dx=x21+x2+12lnx+1+x2+C\int \sqrt{1 + x^2} dx = \frac{x}{2} \sqrt{1 + x^2} + \frac{1}{2} \ln |x + \sqrt{1 + x^2}| + C:

L=2v2cos2θg[X21+X2+12lnX+1+X2]0tanθL = \frac{2v^2 \cos^2 \theta}{g} \left[ \frac{X}{2} \sqrt{1 + X^2} + \frac{1}{2} \ln |X + \sqrt{1 + X^2}| \right]_0^{\tan \theta}

Evaluate at the limits:

At X=tanθX = \tan \theta:

tanθ21+tan2θ+12lntanθ+1+tan2θ\frac{\tan \theta}{2} \sqrt{1 + \tan^2 \theta} + \frac{1}{2} \ln |\tan \theta + \sqrt{1 + \tan^2 \theta}|

=tanθ2secθ+12lntanθ+secθ= \frac{\tan \theta}{2} \sec \theta + \frac{1}{2} \ln |\tan \theta + \sec \theta|

=sinθ2cos2θ+12lnsinθcosθ+1cosθ= \frac{\sin \theta}{2 \cos^2 \theta} + \frac{1}{2} \ln \left| \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} \right|

=sinθ2cos2θ+12ln1+sinθcosθ= \frac{\sin \theta}{2 \cos^2 \theta} + \frac{1}{2} \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right|

At X=0X = 0:

021+02+12ln0+1+02=0+12ln1=0\frac{0}{2} \sqrt{1 + 0^2} + \frac{1}{2} \ln |0 + \sqrt{1 + 0^2}| = 0 + \frac{1}{2} \ln |1| = 0.

So, L=2v2cos2θg[sinθ2cos2θ+12ln1+sinθcosθ]L = \frac{2v^2 \cos^2 \theta}{g} \left[ \frac{\sin \theta}{2 \cos^2 \theta} + \frac{1}{2} \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| \right]

L=v2g[sinθ+cos2θln1+sinθcosθ]L = \frac{v^2}{g} \left[ \sin \theta + \cos^2 \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| \right]

4. Maximize Trajectory Length:

To find the angle θ0\theta_0 that maximizes LL, we need to differentiate LL with respect to θ\theta and set it to zero.

Let f(θ)=sinθ+cos2θln1+sinθcosθf(\theta) = \sin \theta + \cos^2 \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right|. We need to find dfdθ=0\frac{df}{d\theta} = 0.

ddθ(sinθ)=cosθ\frac{d}{d\theta} (\sin \theta) = \cos \theta

For the second term, use the product rule and chain rule:

ddθ(cos2θln1+sinθcosθ)\frac{d}{d\theta} \left( \cos^2 \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| \right)

=(ddθcos2θ)ln1+sinθcosθ+cos2θ(ddθln1+sinθcosθ)= \left( \frac{d}{d\theta} \cos^2 \theta \right) \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + \cos^2 \theta \left( \frac{d}{d\theta} \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| \right)

=(2cosθsinθ)ln1+sinθcosθ+cos2θ(ddθ(ln(1+sinθ)ln(cosθ)))= (-2 \cos \theta \sin \theta) \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + \cos^2 \theta \left( \frac{d}{d\theta} (\ln(1+\sin\theta) - \ln(\cos\theta)) \right)

=2cosθsinθln1+sinθcosθ+cos2θ(cosθ1+sinθsinθcosθ)= -2 \cos \theta \sin \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + \cos^2 \theta \left( \frac{\cos \theta}{1 + \sin \theta} - \frac{-\sin \theta}{\cos \theta} \right)

=2cosθsinθln1+sinθcosθ+cos2θ(cosθ1+sinθ+sinθcosθ)= -2 \cos \theta \sin \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + \cos^2 \theta \left( \frac{\cos \theta}{1 + \sin \theta} + \frac{\sin \theta}{\cos \theta} \right)

=2cosθsinθln1+sinθcosθ+cos2θ(cos2θ+sinθ(1+sinθ)(1+sinθ)cosθ)= -2 \cos \theta \sin \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + \cos^2 \theta \left( \frac{\cos^2 \theta + \sin \theta (1 + \sin \theta)}{(1 + \sin \theta) \cos \theta} \right)

=2cosθsinθln1+sinθcosθ+cosθ(cos2θ+sinθ+sin2θ1+sinθ)= -2 \cos \theta \sin \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + \cos \theta \left( \frac{\cos^2 \theta + \sin \theta + \sin^2 \theta}{1 + \sin \theta} \right)

=2cosθsinθln1+sinθcosθ+cosθ(1+sinθ1+sinθ)= -2 \cos \theta \sin \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + \cos \theta \left( \frac{1 + \sin \theta}{1 + \sin \theta} \right)

=2cosθsinθln1+sinθcosθ+cosθ= -2 \cos \theta \sin \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + \cos \theta

Combining the derivatives:

dfdθ=cosθ2cosθsinθln1+sinθcosθ+cosθ\frac{df}{d\theta} = \cos \theta - 2 \cos \theta \sin \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + \cos \theta

dfdθ=2cosθ2cosθsinθln1+sinθcosθ\frac{df}{d\theta} = 2 \cos \theta - 2 \cos \theta \sin \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right|

dfdθ=2cosθ(1sinθln1+sinθcosθ)\frac{df}{d\theta} = 2 \cos \theta \left( 1 - \sin \theta \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| \right)

Set dfdθ=0\frac{df}{d\theta} = 0. Since θ0\theta_0 is an angle for projectile motion, 0<θ0<π/20 < \theta_0 < \pi/2, so cosθ00\cos \theta_0 \neq 0.

Therefore, we must have:

1sinθ0ln1+sinθ0cosθ0=01 - \sin \theta_0 \ln \left| \frac{1 + \sin \theta_0}{\cos \theta_0} \right| = 0

sinθ0ln1+sinθ0cosθ0=1\sin \theta_0 \ln \left| \frac{1 + \sin \theta_0}{\cos \theta_0} \right| = 1

ln1+sinθ0cosθ0=1sinθ0\ln \left| \frac{1 + \sin \theta_0}{\cos \theta_0} \right| = \frac{1}{\sin \theta_0}

5. Determine α,β,γ\alpha, \beta, \gamma and calculate the final value:

The derived equation for θ0\theta_0 is:

ln1+sinθ0cosθ0=1sinθ0\ln \left| \frac{1 + \sin \theta_0}{\cos \theta_0} \right| = \frac{1}{\sin \theta_0}

Comparing this with the given equation:

lnα+sinθ0βcosθ0=γsinθ0ln \left| \frac{\alpha + sin \theta_0}{\beta cos \theta_0} \right| = \frac{\gamma}{sin \theta_0}

By direct comparison, we find:

α=1\alpha = 1

β=1\beta = 1

γ=1\gamma = 1

Finally, we need to find the value of α+β+γ2\alpha + \beta + \gamma^2:

α+β+γ2=1+1+12=1+1+1=3\alpha + \beta + \gamma^2 = 1 + 1 + 1^2 = 1 + 1 + 1 = 3.

The final answer is 3\boxed{3}.