Question
Question: A ball is thrown at speed $v$ from zero height on level ground. Let $\theta_0$ be the angle at which...
A ball is thrown at speed v from zero height on level ground. Let θ0 be the angle at which the ball should be thrown so that the length of the trajectory is maximum. If θ0 satisfies
lnβcosθ0α+sinθ0=sinθ0γ
then find the value of α+β+γ2.
{you can use ∫1+x2dx=2x1+x2+21{n}∣x+1+x2∣+C}

3
Solution
To find the angle θ0 for maximum trajectory length, we first need to derive the expression for the trajectory length L.
1. Parametric Equations of Trajectory:
For a projectile launched with initial speed v at an angle θ from the horizontal, the position coordinates at time t are:
x(t)=(vcosθ)t
y(t)=(vsinθ)t−21gt2
The horizontal and vertical components of velocity are:
dtdx=vcosθ
dtdy=vsinθ−gt
The ball lands when y(t)=0 (excluding t=0).
(vsinθ)t−21gt2=0
t(vsinθ−21gt)=0
The time of flight T=g2vsinθ.
2. Trajectory Length Formula:
The length of the trajectory L is given by the arc length integral:
L=∫0T(dtdx)2+(dtdy)2dt
L=∫0T(vcosθ)2+(vsinθ−gt)2dt
L=∫0Tv2cos2θ+v2sin2θ−2vgtsinθ+g2t2dt
L=∫0Tv2−2vgtsinθ+g2t2dt
To simplify the integral, let's make a substitution. Notice that the term inside the square root can be written as (vcosθ)2+(gt−vsinθ)2.
Let X=vcosθgt−vsinθ. Then dX=vcosθgdt, so dt=gvcosθdX.
Now, change the limits of integration for X:
When t=0, X1=vcosθ0−vsinθ=−tanθ.
When t=T=g2vsinθ, X2=vcosθg(g2vsinθ)−vsinθ=vcosθ2vsinθ−vsinθ=vcosθvsinθ=tanθ.
Substituting these into the integral for L:
L=∫−tanθtanθ(vcosθ)2+(vcosθ⋅X)2(gvcosθ)dX
L=∫−tanθtanθvcosθ1+X2(gvcosθ)dX
L=gv2cos2θ∫−tanθtanθ1+X2dX
Since 1+X2 is an even function, we can write:
L=g2v2cos2θ∫0tanθ1+X2dX
3. Evaluate the Integral:
Using the given formula ∫1+x2dx=2x1+x2+21ln∣x+1+x2∣+C:
L=g2v2cos2θ[2X1+X2+21ln∣X+1+X2∣]0tanθ
Evaluate at the limits:
At X=tanθ:
2tanθ1+tan2θ+21ln∣tanθ+1+tan2θ∣
=2tanθsecθ+21ln∣tanθ+secθ∣
=2cos2θsinθ+21lncosθsinθ+cosθ1
=2cos2θsinθ+21lncosθ1+sinθ
At X=0:
201+02+21ln∣0+1+02∣=0+21ln∣1∣=0.
So, L=g2v2cos2θ[2cos2θsinθ+21lncosθ1+sinθ]
L=gv2[sinθ+cos2θlncosθ1+sinθ]
4. Maximize Trajectory Length:
To find the angle θ0 that maximizes L, we need to differentiate L with respect to θ and set it to zero.
Let f(θ)=sinθ+cos2θlncosθ1+sinθ. We need to find dθdf=0.
dθd(sinθ)=cosθ
For the second term, use the product rule and chain rule:
dθd(cos2θlncosθ1+sinθ)
=(dθdcos2θ)lncosθ1+sinθ+cos2θ(dθdlncosθ1+sinθ)
=(−2cosθsinθ)lncosθ1+sinθ+cos2θ(dθd(ln(1+sinθ)−ln(cosθ)))
=−2cosθsinθlncosθ1+sinθ+cos2θ(1+sinθcosθ−cosθ−sinθ)
=−2cosθsinθlncosθ1+sinθ+cos2θ(1+sinθcosθ+cosθsinθ)
=−2cosθsinθlncosθ1+sinθ+cos2θ((1+sinθ)cosθcos2θ+sinθ(1+sinθ))
=−2cosθsinθlncosθ1+sinθ+cosθ(1+sinθcos2θ+sinθ+sin2θ)
=−2cosθsinθlncosθ1+sinθ+cosθ(1+sinθ1+sinθ)
=−2cosθsinθlncosθ1+sinθ+cosθ
Combining the derivatives:
dθdf=cosθ−2cosθsinθlncosθ1+sinθ+cosθ
dθdf=2cosθ−2cosθsinθlncosθ1+sinθ
dθdf=2cosθ(1−sinθlncosθ1+sinθ)
Set dθdf=0. Since θ0 is an angle for projectile motion, 0<θ0<π/2, so cosθ0=0.
Therefore, we must have:
1−sinθ0lncosθ01+sinθ0=0
sinθ0lncosθ01+sinθ0=1
lncosθ01+sinθ0=sinθ01
5. Determine α,β,γ and calculate the final value:
The derived equation for θ0 is:
lncosθ01+sinθ0=sinθ01
Comparing this with the given equation:
lnβcosθ0α+sinθ0=sinθ0γ
By direct comparison, we find:
α=1
β=1
γ=1
Finally, we need to find the value of α+β+γ2:
α+β+γ2=1+1+12=1+1+1=3.
The final answer is 3.