Solveeit Logo

Question

Physics Question on rotational motion

A ball is spun with angular acceleration α = 6t2 - 2t, where t is in second and α is in rads-2. At t = 0, the ball has angular velocity of 10 rads-1 and angular position of 4 rad. The most appropriate expression for the angular position of the ball is :

A

34t4t2+10t\frac{3}{4}t^4−t^2+10t

B

t42t33+10t+4\frac{t_4}{2}−\frac{t_3}{3}+10t+4

C

2t43t36+10t+12\frac{2t^4}{3}−\frac{t^3}{6}+10t+12

D

2t4t32+5t+42t^4−\frac{t^3}{2}+5t+4

Answer

t42t33+10t+4\frac{t_4}{2}−\frac{t_3}{3}+10t+4

Explanation

Solution

The correct answer is (B) : t42t33+10t+4\frac{t_4}{2}−\frac{t_3}{3}+10t+4
α=dωdt=6t22tα=\frac{d\omega}{dt}=6t^2−2t
0ωdω=0t(6t22t)dt∫_{0}^{\omega} d\omega=∫_{0}^{t}(6t^2−2t)dt
so ω = 2t3 – t2 + 10
and
dθdt=2t3t2+10\frac{dθ}{dt}=2t^3−t^2+10
so
4θdθ=0t(2t3t2+10)dt∫_{4}^{θ}dθ=∫_{0}^{t}(2t^3−t^2+10)dt
θ=t42t33+10t+4θ=\frac{t_4}{2}-\frac{t^3}{3}+10t+4