Solveeit Logo

Question

Physics Question on rotational motion

A ball is spun with angular acceleration α = 6t2 - 2t, where t is in second and α is in rads-2. At t = 0, the ball has angular velocity of 10 rads-1 and angular position of 4 rad. The most appropriate expression for the angular position of the ball is :

A

34\frac{3}{4}t4-t2+10t

B

t42\frac{t^4}{2}-t33\frac{t^3}{3}+10t+4

C

2t43\frac{2t^4}{3}-t36\frac{t^3}{6}+10t+12

D

2t4-t32\frac{t^3}{2}+5t+4

Answer

t42\frac{t^4}{2}-t33\frac{t^3}{3}+10t+4

Explanation

Solution

α=dωdt=6t22t\alpha= \frac{dω}{dt} =6t^2−2t

0ωdw=0t(6t22t)dt\int_{0}^{ω}dw=\int_{0}^{t} (6t^2-2t)dt

So, ω=2t3t2\+10\omega = 2t^3 – t^2 \+ 10

4θθdθ=0t(2t3t2+10)dt)\int_{4}^{θ} θ dθ = \int_{0}^{t}(2t^3-t^2+10)dt)

θ=t42t33+10t+4\theta = \frac{t^4}{2} − \frac{t^3}{3}+10t+4

,\therefore , The correct option is (B): t42t33+10t+4\frac{t^4}{2} − \frac{t^3}{3}+10t+4