Solveeit Logo

Question

Physics Question on rotational motion

A ball is released on a smooth plane as shown. It strikes with the ground, the coefficient of restitution is 13\frac{1}{\sqrt{3}} Choose the correct options
A ball is released on a smooth plane

A

v=2ghx^v=\sqrt{2gh}\,\,\hat{x}

B

θ=60\theta=60^{\circ}

C

v=2gh(x^z^)\vec{v}=\sqrt{2gh}\,(\hat{x}-\hat{z})

D

dh1=23\frac{d}{h_1}=2\sqrt3

Answer

v=2ghx^v=\sqrt{2gh}\,\,\hat{x}

Explanation

Solution

The correct options are : (A),(B) and (D).

From energy conservation :
12mv02=mghv0=2gh\frac{1}{2}mv_0^2=mgh\Rightarrow v_0=\sqrt{2gh} ………………….Option (A) is correct.

tanθ=vzvx=2g(3h)2gh=3tan\theta=\frac{v_z}{v_x}=\frac{\sqrt{2g(3h)}}{\sqrt{2gh}}=\sqrt{3}

θ=60\theta=60^{\circ} ……………………………Option (B) is correct.

v=2ghi^2gh(3h)k^\vec{v}=\sqrt{2gh}\,\hat{i}\,-\,\sqrt{2gh(3h)}\,\hat{k}

=2gh(i^3k^)=\sqrt{2gh}(\hat{i}-\sqrt3 \hat{k}) …………………………….Option(C) is incorrect.

d=v02(3h)g=2gh2×3hgv_0\sqrt{\frac{2(3h)}{g}}=\sqrt{2gh}\sqrt{\frac{2\times3h}{g}}

d=2h32h\sqrt3

dh1=23\frac{d}{h_1}=2\sqrt3 …………………….. Option (D) is correct.