Solveeit Logo

Question

Question: A ball is projected on smooth inclined in direction perpendicular to line of greatest slope with vel...

A ball is projected on smooth inclined in direction perpendicular to line of greatest slope with velocity 10 m/s. Choose the correct options(s). (Take g = 10 m/s²)

A

Angle between initial velocity and velocity at t = 1 s is 45°

B

Angle between initial velocity and velocity at t = 2 s is 45°

C

Displacement of ball in 2 s is 10510\sqrt{5} m

D

Path of the ball is parabola

Answer

B, C, D

Explanation

Solution

The ball is projected on a smooth inclined plane with an angle of inclination θ=30°\theta = 30° and g=10g = 10 m/s². The initial velocity is v0=10i^\vec{v}_0 = 10 \hat{i} m/s, perpendicular to the line of greatest slope. The acceleration along the line of greatest slope (y-axis) is ay=gsinθ=10sin30°=5a_y = g \sin\theta = 10 \sin 30° = 5 m/s². There is no acceleration perpendicular to the line of greatest slope (x-axis), so ax=0a_x = 0.

The acceleration vector is a=5j^\vec{a} = 5 \hat{j} m/s². The velocity at time tt is v(t)=v0+at=10i^+5tj^\vec{v}(t) = \vec{v}_0 + \vec{a}t = 10 \hat{i} + 5t \hat{j} m/s. The displacement at time tt is r(t)=v0t+12at2=10ti^+52t2j^\vec{r}(t) = \vec{v}_0 t + \frac{1}{2} \vec{a} t^2 = 10t \hat{i} + \frac{5}{2} t^2 \hat{j} m.

A. Angle between initial velocity and velocity at t = 1 s: v(1)=10i^+5j^\vec{v}(1) = 10 \hat{i} + 5 \hat{j}. cosϕ=v0v(1)v0v(1)=(10i^)(10i^+5j^)10102+52=10010125=1055=25\cos\phi = \frac{\vec{v}_0 \cdot \vec{v}(1)}{|\vec{v}_0| |\vec{v}(1)|} = \frac{(10 \hat{i}) \cdot (10 \hat{i} + 5 \hat{j})}{10 \sqrt{10^2 + 5^2}} = \frac{100}{10 \sqrt{125}} = \frac{10}{5\sqrt{5}} = \frac{2}{\sqrt{5}}. This angle is not 45°.

B. Angle between initial velocity and velocity at t = 2 s: v(2)=10i^+10j^\vec{v}(2) = 10 \hat{i} + 10 \hat{j}. cosϕ=v0v(2)v0v(2)=(10i^)(10i^+10j^)10102+102=10010200=10010×102=12\cos\phi = \frac{\vec{v}_0 \cdot \vec{v}(2)}{|\vec{v}_0| |\vec{v}(2)|} = \frac{(10 \hat{i}) \cdot (10 \hat{i} + 10 \hat{j})}{10 \sqrt{10^2 + 10^2}} = \frac{100}{10 \sqrt{200}} = \frac{100}{10 \times 10\sqrt{2}} = \frac{1}{\sqrt{2}}. So, ϕ=45°\phi = 45°. This option is correct.

C. Displacement of ball in 2 s: r(2)=10(2)i^+52(22)j^=20i^+10j^\vec{r}(2) = 10(2) \hat{i} + \frac{5}{2} (2^2) \hat{j} = 20 \hat{i} + 10 \hat{j} m. The magnitude is r(2)=202+102=400+100=500=105|\vec{r}(2)| = \sqrt{20^2 + 10^2} = \sqrt{400 + 100} = \sqrt{500} = 10\sqrt{5} m. This option is correct.

D. Path of the ball: x(t)=10t    t=x/10x(t) = 10t \implies t = x/10. y(t)=52t2=52(x10)2=52x2100=140x2y(t) = \frac{5}{2} t^2 = \frac{5}{2} (\frac{x}{10})^2 = \frac{5}{2} \frac{x^2}{100} = \frac{1}{40} x^2. This is the equation of a parabola. This option is correct.