Solveeit Logo

Question

Physics Question on Motion in a straight line

A ball is dropped on to the floor from a height of 10 m. It rebounds to a height of 2.5 m. If the ball is in contact with the floor for 0.01 seconds, what is the average acceleration during contact? (Take g=10ms2g = 10\, m \,s^{-2} )

A

700ms2700\, m \,s^{-2}

B

1400ms21400\, m \,s^{-2}

C

2100ms22100\, m \,s^{-2}

D

2800ms22800\, m \,s^{-2}

Answer

2100ms22100\, m \,s^{-2}

Explanation

Solution

υ1=2gh=2?10?10=200\upsilon_{1} = \sqrt{2\,gh} = \sqrt{2 ? 10 ? 10} = \sqrt{200} υ2=2gh=2?10?10=50\upsilon _{2} = -\sqrt{2\,gh} = -\sqrt{2 ? 10 ? 10} = -\sqrt{50} So Δυ=υ1υ2=200+50=350=21\Delta\upsilon = \upsilon _{1} - \upsilon _{2} = \sqrt{200}+\sqrt{50} = 3\sqrt{50} = 21 \therefore\quad Acceleration =ΔυΔt=210.01=2100ms2= \frac{\Delta \upsilon }{\Delta t } = \frac{21}{0.01} = 2100\,m\,s^{-2}