Solveeit Logo

Question

Question: A ball is dropped on the floor from a height of 10 m. It rebounds to a height of 2.5 m. If the ball ...

A ball is dropped on the floor from a height of 10 m. It rebounds to a height of 2.5 m. If the ball is in contact with the floor for 0.01 sec, the average acceleration during contact is

A

2100 m/sec2m / \sec ^ { 2 } downwards

B

2100 m/sec2m / \sec ^ { 2 } upwards

C

1400 m/sec2m / \sec ^ { 2 }

D

700 m/sec2m / \sec ^ { 2 }

Answer

2100 m/sec2m / \sec ^ { 2 } upwards

Explanation

Solution

Velocity at the time of striking the floor,

u=2gh1=2×9.8×10=14 m/su = \sqrt { 2 g h _ { 1 } } = \sqrt { 2 \times 9.8 \times 10 } = 14 \mathrm {~m} / \mathrm { s }

Velocity with which it rebounds.

v=2gh2=2×9.8×2.5=7 m/sv = \sqrt { 2 g h _ { 2 } } = \sqrt { 2 \times 9.8 \times 2.5 } = 7 \mathrm {~m} / \mathrm { s }

\therefore Change in velocity

Δv=7(14)=21 m/s\Delta v = 7 - ( - 14 ) = 21 \mathrm {~m} / \mathrm { s }

\therefore Acceleration =ΔvΔt=210.01=2100 m/s2= \frac { \Delta v } { \Delta t } = \frac { 21 } { 0.01 } = 2100 \mathrm {~m} / \mathrm { s } ^ { 2 } (upwards)