Solveeit Logo

Question

Physics Question on Newtons Laws of Motion

A ball is dropped from height HH on to a horizontal surface. If the coefficient of restitution is ee then the total time after which it comes to rest is

A

2Hg(1e1+e)\sqrt{\frac{2 H}{g}}\left(\frac{1 - \, e}{1 + \, e}\right)

B

2Hg(1+e1e)\sqrt{\frac{2 H}{g}}\left(\frac{1 + e}{1 - e}\right)

C

2Hg(1+e21e2)\sqrt{\frac{2 H}{g}}\left(\frac{1 + e^{2}}{1 - \, e^{2}}\right)

D

2Hg(1e21+e2)\sqrt{\frac{2 H}{g}}\left(\frac{1 - \, e^{2}}{1 + e^{2}}\right)

Answer

2Hg(1+e1e)\sqrt{\frac{2 H}{g}}\left(\frac{1 + e}{1 - e}\right)

Explanation

Solution

The time it takes for the ball to fall from a height is given by t=2Hgt=\sqrt{\frac{2 H}{g}} The height up to which the ball bounces after the nthn^{th} collision from the floor is Hn=e2nHH_{n}=e^{2 n}H t=2Hg+22H1g+22H2g+t=\sqrt{\frac{2 H}{g}}+2\sqrt{\frac{2 H_{1}}{g}}+2\sqrt{\frac{2 H_{2}}{g}}+\ldots \infty t=2Hg(1+2e+2e2+..fty)t=\sqrt{\frac{2 H}{g}}\left(1 + 2 e + 2 e^{2} + \, \ldots \ldots . . \in fty\right) t=t= 2Hg(1+e1e)\sqrt{\frac{2 H}{g}}\left(\frac{1 + e}{1 - e}\right)