Solveeit Logo

Question

Physics Question on Motion in a straight line

A ball is dropped from a high rise platform at t=0t = 0 starting from rest. After 66 seconds another ball is thrown downwards from the same platform with a speed vv. The two balls meet at t=18st = 18 \, s. What is the value of vv? (Takeg=10m/s2)(Take\, g = 10\, m/s^2)

A

75m/s75\,m/s

B

55m/s55\,m/s

C

40m/s40\,m/s

D

60m/s60\,m/s

Answer

75m/s75\,m/s

Explanation

Solution

Let the two balls meet after tst \,s at distance xx from the platform.
For the first ball
u=0,t=18s,g=10m/s2u = 0, t = 18\, s, g = 10\, m/s^2
Using h=ut+12gt2 h = ut+\frac{1}{2} gt^2
\therefore x = \frac{1}{2} \times 10 \times 18^2 \hspace30mm ...(i)
For the second ball
u=v,t=12s,g=10m/s2u = v, t = 12\, s, g = 10\, m/s^2
Using h=ut+12gt2h = ut+\frac{1}{2} gt^2
\therefore x = v \times 12 + \frac{1}{2} \times 10 \times 12^2 \hspace15mm ...(ii)
From equations (i) and (ii), we get
12×10×182=12v+12×10×(12)2\frac{1}{2} \times 10 \times 18^2 = 12v + \frac{1}{2} \times 10 \times (12)^2
or 12v=12×10×[(18)2(12)2] \, \, 12v = \frac{1}{2} \times 10 \times [(18)^2 - (12)^2]
=12×10×[(18+12)(1812)]= \frac{1}{2} \times 10 \times [(18+12) - (18-12)]
12v=12×10×30×612v=\frac{1}{2} \times 10 \times 30 \times 6
or v=1×10×30×62×12=75m/s \, \, v = \frac{1 \times 10 \times 30 \times 6 }{2 \times12}=75\, m/s