Solveeit Logo

Question

Question: A bag contains 5 balls; 3 balls are drawn in succession without replacement and two white and 1 bla...

A bag contains 5 balls; 3 balls are drawn in succession

without replacement and two white and 1 black ball are

obtained. If it is known that every ball in the bag is either

white or black, then the probability that, the next draw will

give white ball.

A

2/5

B

3/5

C

1/5

D

4/5

Answer

3/5

Explanation

Solution

Let E0, E1, E2 be the events that the bag contains 2,3,4 white balls.

P(E0) = P(E1) = P(E2) = 1/3.

Let E be the event of drawing 2 white and 1 black balls.

P(E/E0) = 2C23C15C3=310\frac { { } ^ { 2 } \mathrm { C } _ { 2 } \cdot { } ^ { 3 } \mathrm { C } _ { 1 } } { { } ^ { 5 } \mathrm { C } _ { 3 } } = \frac { 3 } { 10 }

P(E/E1) = 3C22C15C3=610\frac { { } ^ { 3 } \mathrm { C } _ { 2 } \cdot { } ^ { 2 } \mathrm { C } _ { 1 } } { { } ^ { 5 } \mathrm { C } _ { 3 } } = \frac { 6 } { 10 } P(E/E2) = 4C215C3=610\frac { { } ^ { 4 } \mathrm { C } _ { 2 } \cdot 1 } { { } ^ { 5 } \mathrm { C } _ { 3 } } = \frac { 6 } { 10 } .

P(E0/E) = 13×31013×310+13×610+13×610=11+2+2=15\frac { \frac { 1 } { 3 } \times \frac { 3 } { 10 } } { \frac { 1 } { 3 } \times \frac { 3 } { 10 } + \frac { 1 } { 3 } \times \frac { 6 } { 10 } + \frac { 1 } { 3 } \times \frac { 6 } { 10 } } = \frac { 1 } { 1 + 2 + 2 } = \frac { 1 } { 5 }

P(E1/E) = 2/5; P(E2/E) = 2/5.

Probability that next draw will give white ball = P(E0/E).0 + P(E1/E) 12\frac { 1 } { 2 } + P(E2/E).1

= 0 + 25×12+25×1=35\frac { 2 } { 5 } \times \frac { 1 } { 2 } + \frac { 2 } { 5 } \times 1 = \frac { 3 } { 5 } .