Solveeit Logo

Question

Question: A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at rand...

A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is

A

4766\frac { 47 } { 66 }

B

1033\frac { 10 } { 33 }

C

522\frac { 5 } { 22 }

D

None of these

Answer

4766\frac { 47 } { 66 }

Explanation

Solution

We have the following three pattern :

(i) Red, white P(A)=3×412C2P ( A ) = \frac { 3 \times 4 } { { } ^ { 12 } C _ { 2 } }

(ii) Red, blue P(B)=3×512C2P ( B ) = \frac { 3 \times 5 } { { } ^ { 12 } C _ { 2 } }

(iii) Blue, white P(C)=4×512C2P ( C ) = \frac { 4 \times 5 } { { } ^ { 12 } C _ { 2 } }

Since all these cases are exclusive, so the required probability =(12+15+20)12C2=(47×2)(12×11)=4766= \frac { ( 12 + 15 + 20 ) } { { } ^ { 12 } C _ { 2 } } = \frac { ( 47 \times 2 ) } { ( 12 \times 11 ) } = \frac { 47 } { 66 }.