Question
Question: a, b, c is non-zero \(\left( {\begin{array}{*{20}{c}} {{b^2}{c^2}}&{bc}&{b + c} \\\ {{c^2...
a, b, c is non-zero
\left( {\begin{array}{*{20}{c}}
{{b^2}{c^2}}&{bc}&{b + c} \\\
{{c^2}{a^2}}&{ca}&{c + a} \\\
{{a^2}{b^2}}&{ab}&{a + b}
\end{array}} \right) = \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_
A) abc
B) a2b2c2
C) ab+bc+ca
D) None of these
Solution
DETERMINANT OF A 3 X 3 MATRIX
The determinant of a 3 x 3 matrix A,
A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)
is defined as
A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right) = ({a_{11}}{a_{22}}{a_{33}} + {a_{12}}{a_{23}}{a_{31}} + {a_{13}}{a_{21}}{a_{32}}) - ({a_{31}}{a_{22}}{a_{13}} + {a_{32}}{a_{23}}{a_{11}} + {a_{33}}{a_{21}}{a_{12}})
An easy method for calculating 3 X 3 determinants is found by rearranging and factoring the terms given above to get