Solveeit Logo

Question

Mathematics Question on Vector Algebra

ABCA B C is a triangle, right angled at A.A . The resultant of the forces acting along AB,BC\overline{A B}, \overline{B C} with magnitudes 1AB\frac{1}{A B} and 1AC\frac{1}{A C} respectively is the force along AD,\overline{A D}, where DD is the foot of the perpendicular from AA onto BCB C. The magnitude of the resultant is

A

(AB)(AC)AB+AC\frac{\left(AB\right)\left(AC\right)}{AB+AC}

B

1AB+1AC\frac{1}{AB}+\frac{1}{AC}

C

1AD\frac{1}{AD}

D

AB2+AC2(AB)2(AC)2\frac{AB^{2}+AC^{2}}{\left(AB\right)^{2}\left(AC\right)^{2}}

Answer

1AD\frac{1}{AD}

Explanation

Solution

Let BC=l\left|\overrightarrow{BC}\right|=l InΔΛABC,\therefore In\,\Delta\Lambda ABC, l=AB2+AC2l=\sqrt{AB^{2}+AC^{2}} and tanθ=ABACtan \,\theta=\frac{AB}{AC} sinθ=ABl\Rightarrow sin\,\theta=\frac{AB}{l} and cosθ=AClcos\,\theta=\frac{AC}{l} \therefore Resultant vector 1ABi^+1ACj^=(1lsinθi^+1lcosθj^)\frac{1}{AB} \hat{i}+\frac{1}{AC} \hat{j}=\left(\frac{1}{l\,sin\,\theta} \hat{i}+\frac{1}{l\,cos\,\theta} \hat{j}\right) =kAD=k\,\overrightarrow{AD} Now, AD=ACsinθ=lsinθcosθAD=AC\,sin\,\theta=l\,sin\,\theta\,cos\,\theta =ABACl=\frac{AB\cdot AC}{l} Magnitude of resultant vector =1l2(1sin2θ+1cos2θ)=\sqrt{\frac{1}{l^{2}}\left(\frac{1}{sin^{2}\,\theta}+\frac{1}{cos^{2}\,\theta}\right)} =l(AB)(AC)=1AD=\frac{l}{\left(AB\right)\left(AC\right)}=\frac{1}{AD}