Solveeit Logo

Question

Question: A, B, C, D,…. are n points in a plane whose coordinates are \[\left( {{x}_{1}},{{y}_{1}} \right),\le...

A, B, C, D,…. are n points in a plane whose coordinates are (x1,y1),(x2,y2),(x3,y3),.......\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right),....... AB is bisected in the point G1;G1C{{G}_{1}};{{G}_{1}}C is divided at G2{{G}_{2}} in the ratio 1 : 2, G2D{{G}_{2}}D is divided at G3{{G}_{3}} in the ratio 1 : 3, G3E{{G}_{3}}E at G4{{G}_{4}} in the ratio 1 : 4, and so on until all the points are exhausted. Show that the coordinates of the final point so obtained are: - x1+x2+x3+....+xnn\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+....+{{x}_{n}}}{n} and y1+y2+y3+....+ynn\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}+....+{{y}_{n}}}{n}. [This point is called the centre of Mean Position of the n given points].

Explanation

Solution

First consider points A and B and use the mid – point formula given as: - (x1+x22,y1+y22)\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right), to calculate the coordinates of G1{{G}_{1}}. Here, (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) are the coordinates of A and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) are the coordinates of B. Now, consider a line joining the points G1{{G}_{1}} and C which is divided at G2{{G}_{2}} in the ratio 1 : 2. Use section formula given as: - (MX2+NX1M+N,MY2+NY1M+N)\left( \dfrac{M{{X}_{2}}+N{{X}_{1}}}{M+N},\dfrac{M{{Y}_{2}}+N{{Y}_{1}}}{M+N} \right) to calculate the coordinates of G2{{G}_{2}}. Here, M : N is the ratio in which line is divided and (X1,Y1),(X2,Y2)\left( {{X}_{1}},{{Y}_{1}} \right),\left( {{X}_{2}},{{Y}_{2}} \right) are the coordinates of G1,C{{G}_{1}},C respectively. Use the same section formula to calculate the coordinates of G3,G4{{G}_{3}},{{G}_{4}} and observe the general pattern to get the coordinates of Gn{{G}_{n}}.

Complete step-by-step solution
Here, we have been provided with ‘n’ points: - A, B, C, D ….. n having coordinates (x1,y1),(x2,y2),(x3,y3),.....\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right),....., where (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) are the coordinates of A and B respectively, we get,

\Rightarrow x – coordinate of G1=x1+x22{{G}_{1}}=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}
\Rightarrow y – coordinate of G1=y1+y22{{G}_{1}}=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}
Now, it is given that G1C{{G}_{1}}C is divided at G2{{G}_{2}} in the ratio 1 : 2.
So, we have,

Using the section formula given as: - (MX2+NX1M+N,MY2+NY1M+N)\left( \dfrac{M{{X}_{2}}+N{{X}_{1}}}{M+N},\dfrac{M{{Y}_{2}}+N{{Y}_{1}}}{M+N} \right) to calculate the coordinates of G2{{G}_{2}}, where M : N is the ratio in which G1C{{G}_{1}}C is divided and (X1,Y1)\left( {{X}_{1}},{{Y}_{1}} \right) and (X2,Y2)\left( {{X}_{2}},{{Y}_{2}} \right) are the coordinates of G1{{G}_{1}} and C respectively, we get,
M:N=1:2\Rightarrow M:N=1:2
\Rightarrow Coordinates of C = (x3,y3)=(X2,Y2)\left( {{x}_{3}},{{y}_{3}} \right)=\left( {{X}_{2}},{{Y}_{2}} \right)
\Rightarrow Coordinates of G1=(x1+x22,y1+y22)=(X1,Y1){{G}_{1}}=\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)=\left( {{X}_{1}},{{Y}_{1}} \right)
\Rightarrow x – coordinate of G2{{G}_{2}} = 2×(x1+x22)+1×x32+1\dfrac{2\times \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)+1\times {{x}_{3}}}{2+1}
\Rightarrow x – coordinate of G2{{G}_{2}} = x1+x2+x33\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3}
\Rightarrow y – coordinate of G2{{G}_{2}} = 2×(y1+y22)+1×y32+1\dfrac{2\times \left( \dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)+1\times {{y}_{3}}}{2+1}
\Rightarrow y – coordinate of G2{{G}_{2}} = y1+y2+y33\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3}
Now, we have been given that G2D{{G}_{2}}D is divided at G3{{G}_{3}} in ratio 1: 3. So, we have,

Using the section formula, we get,
M:N=1:3\Rightarrow M:N=1:3
\Rightarrow Coordinates of D = (x4,y4)=(X2,Y2)\left( {{x}_{4}},{{y}_{4}} \right)=\left( {{X}_{2}},{{Y}_{2}} \right)
\Rightarrow Coordinates of G2=(x1+x2+x33,y1+y2+y33)=(X1,Y1){{G}_{2}}=\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)=\left( {{X}_{1}},{{Y}_{1}} \right)
\Rightarrow x – coordinate of G3=3×(x1+x2+x33)+1×x43+1{{G}_{3}}=\dfrac{3\times \left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right)+1\times {{x}_{4}}}{3+1}
\Rightarrow x – coordinate of G3=x1+x2+x3+x44{{G}_{3}}=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}}{4}
Similarly, y – coordinate of G3=y1+y2+y3+y44{{G}_{3}}=\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}}{4}
Therefore, on observing the pattern we can write the coordinates of G4,G5,....{{G}_{4}},{{G}_{5}},.... easily.
On observing the series in the question we can say that the line joining the points G(n2){{G}_{\left( n-2 \right)}} and n will be divided by Gn{{G}_{n}} in the ratio of 1 : (n - 1). Therefore, we have,

Here, M : N = 1 : (n - 1)
\Rightarrow Coordinates of n=(xn,yn)=(X2,Y2)n=\left( {{x}_{n}},{{y}_{n}} \right)=\left( {{X}_{2}},{{Y}_{2}} \right)
\Rightarrow Coordinates of G(n2)=(x1+x2+.....+xn1n1,y1+y2+....+yn1n1)=(X1,Y1){{G}_{\left( n-2 \right)}}=\left( \dfrac{{{x}_{1}}+{{x}_{2}}+.....+{{x}_{n-1}}}{n-1},\dfrac{{{y}_{1}}+{{y}_{2}}+....+{{y}_{n-1}}}{n-1} \right)=\left( {{X}_{1}},{{Y}_{1}} \right)
So, applying the section formula, we get,
\Rightarrow x – coordinate of Gn=(n1)×(x1+x2+.....+xn1n1)+1×xn1+(n1){{G}_{n}}=\dfrac{\left( n-1 \right)\times \left( \dfrac{{{x}_{1}}+{{x}_{2}}+.....+{{x}_{n-1}}}{n-1} \right)+1\times {{x}_{n}}}{1+\left( n-1 \right)}
\Rightarrow x – coordinate of Gn=x1+x2+.....+xn1+xn1+(n1){{G}_{n}}=\dfrac{{{x}_{1}}+{{x}_{2}}+.....+{{x}_{n-1}}+{{x}_{n}}}{1+\left( n-1 \right)}
Similarly, y – coordinate of Gn=y1+y2+......+yn1+ynn{{G}_{n}}=\dfrac{{{y}_{1}}+{{y}_{2}}+......+{{y}_{n-1}}+{{y}_{n}}}{n}
Here, Gn{{G}_{n}} will be the final point whose coordinates are: - x1+x2+x3.....+xnn\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}.....+{{x}_{n}}}{n} and y1+y2+y3.....+ynn\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}.....+{{y}_{n}}}{n}.
Hence, proved

Note: One must note that it is not possible for us to determine the coordinates of each of the points G1,G2,G3,....{{G}_{1}},{{G}_{2}},{{G}_{3}},.... up to Gn{{G}_{n}} using the formula again and again. That is why we have to identify the general expression for the points. You must remember the question. Remember that the midpoint formula is a special case of section formula where M: N = 1: 1.