Solveeit Logo

Question

Question: A, B, C are the angles of a triangle, then \[\sin^{2}A + \sin^{2}B + \sin^{2}C - 2\cos A\cos B\cos ...

A, B, C are the angles of a triangle, then

sin2A+sin2B+sin2C2cosAcosBcosC=\sin^{2}A + \sin^{2}B + \sin^{2}C - 2\cos A\cos B\cos C =

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

sin2A+sin2B+sin2C\sin^{2}A + \sin^{2}B + \sin^{2}C

=1cos2A+1cos2B+sin2C= 1 - \cos^{2}A + 1 - \cos^{2}B + \sin^{2}C

=2cos2Acos(B+C)cos(BC)= 2 - \cos^{2}A - \cos(B + C)\cos(B - C)

=2cosA[cosAcos(BC)]= 2 - \cos A\lbrack\cos A - \cos(B - C)\rbrack

=2cosA[cos(B+C)cos(BC)]= 2 - \cos A\lbrack - \cos(B + C) - \cos(B - C)\rbrack

=2+cosA.2cosBcosC= 2 + \cos A.2\cos B\cos C

sin2A+sin2B+sin2C2cosAcosBcosC=2\sin^{2}A + \sin^{2}B + \sin^{2}C - 2\cos A\cos B\cos C = 2.