Question
Question: A, B, C are the angles of a triangle, then \[\sin^{2}A + \sin^{2}B + \sin^{2}C - 2\cos A\cos B\cos ...
A, B, C are the angles of a triangle, then
sin2A+sin2B+sin2C−2cosAcosBcosC=
A
1
B
2
C
3
D
4
Answer
2
Explanation
Solution
sin2A+sin2B+sin2C
=1−cos2A+1−cos2B+sin2C
=2−cos2A−cos(B+C)cos(B−C)
=2−cosA[cosA−cos(B−C)]
=2−cosA[−cos(B+C)−cos(B−C)]
=2+cosA.2cosBcosC
∴ sin2A+sin2B+sin2C−2cosAcosBcosC=2.