Solveeit Logo

Question

Question: A, B, C and D are points in a vertical line such that AB = BC = CD. If a body falls from rest at A, ...

A, B, C and D are points in a vertical line such that AB = BC = CD. If a body falls from rest at A, prove that the time of descent through AB, BC and CD are in the ratio of 1 :— : —.

A

(21):(32)\left( \sqrt{2 - 1} \right):\left( \sqrt{3} - \sqrt{2} \right)

B

(31):(32)\left( \sqrt{3} - 1 \right):\left( \sqrt{3} - \sqrt{2} \right)

C

(32):(21)\left( \sqrt{3} - \sqrt{2} \right):\left( \sqrt{2} - 1 \right)

D

(12):(23)\left( 1 - \sqrt{2} \right):\left( \sqrt{2} - \sqrt{3} \right)

Answer

(21):(32)\left( \sqrt{2 - 1} \right):\left( \sqrt{3} - \sqrt{2} \right)

Explanation

Solution

Let t1, t2 and t3 be the times to cover AB, BC and CD

For AB, h = 1/2 gt12

For AC, 2h = 12\frac{1}{2} g(t1 + t2)2

For AD, 3h = 12\frac{1}{2} g(t1 + t2 + t3)2

∴ t1: (t1 + t2) : (t1 + t2 + t3)

= 1 : √2 : √3

Thus t1 : t2 : t3 : : 1 : (√2 - 1) : √3 - √2.