Solveeit Logo

Question

Question: A, B, C and D are four points such that AB \( = m(2i - 6j + 2k), \) BC \( = i + 2j \) and CD \( =...

A, B, C and D are four points such that AB =m(2i6j+2k),= m(2i - 6j + 2k), BC =i+2j= i + 2j and
CD =n(6i+15j3k)= n( - 6i + 15j - 3k) If AB and CD intersect at some point H, then
(This question has multiple correct options)
A. m12m \geqslant \dfrac{1}{2}
B. n12n \geqslant \dfrac{1}{2}
C.Area of ΔBCH=126\Delta BCH = \dfrac{1}{{2}}\sqrt 6
D.All of these

Explanation

Solution

Hint : Here we will use the different concepts of the solutions of the equations, the cross-product of the vector equation and area of the triangle using the cross product of vectors. Substitute and simplify as per the required solution.

Complete step-by-step answer :

Given that lines AB and CD intersect at the point H and now connect the points C and B.
So, the triangle BCH is formed.
Also,
AB=m(2i6j+2k),\overrightarrow {AB} = m(2i - 6j + 2k),
BC=i+2j\overrightarrow {BC} = i + 2j and
CD=n(6i+15j3k).\overrightarrow {CD} = n( - 6i + 15j - 3k).
From the above figure, we can say that HB=xAB\overrightarrow {HB} = x\overrightarrow {AB}
Where, “x” lies between zero and one. Such that 0<x<10 < x < 1
Similarly, CH=yCD\overrightarrow {CH} = y\overrightarrow {CD}
Now, in ΔCHB,\Delta CHB,
CH+HB=CB\Rightarrow \overrightarrow {CH} + \overrightarrow {HB} = \overrightarrow {CB}
Place values from the given data –
yn(6i+15j3k)+xm(2i6j+2k)=i2j\Rightarrow yn( - 6i + 15j - 3k) + xm(2i - 6j + 2k) = - i - 2j
Multiply the factors inside the bracket and simplify the above equations –
(6yni+15ynj3ynk)+(2xmi6xmj+2xmk)=i2j\Rightarrow ( - 6yni + 15ynj - 3ynk) + (2xmi - 6xmj + 2xmk) = - i - 2j
Make pair of terms with respect to the “i”, “j” and “k” terms –
6yni+2xmi+15ynj6xmj3ynk+2xmk=i2j\Rightarrow \underline { - 6yni + 2xmi} + \underline {15ynj - 6xmj} \underline { - 3ynk + 2xmk} = - i - 2j
Take common the respective terms –
i(6ny+2mx)+j(15yn6x)+k(3yn+2xm)=i2j\Rightarrow i( - 6ny + 2mx) + j(15yn - 6x) + k( - 3yn + 2xm) = - i - 2j
Now, compare the respective i,j and k terms on both the sides of the equation –
6ny+2mx=1 .... (A) 15yn6mx=2 .... (B) (3yn+2xm)=0 .... (C)  \Rightarrow - 6ny + 2mx = - 1\,{\text{ }}....{\text{ (A)}} \\\ \Rightarrow 15yn - 6mx = - 2{\text{ }}....{\text{ (B)}} \\\ \Rightarrow ( - 3yn + 2xm) = 0{\text{ }}....{\text{ (C)}} \\\
Simplify the equations to get the values of the terms “x” and “y”
Solve the equation (c)
(3yn+2xm)=0  3yn=2xm   .... (D)  \Rightarrow ( - 3yn + 2xm) = 0{\text{ }} \\\ \Rightarrow 3yn = 2xm\;{\text{ }}....{\text{ (D)}} \\\
Place the value of the equation (D) in the equation (A)
4mx+2mx=1 \Rightarrow - 4mx + 2mx = 1\,{\text{ }}
Simplify the equation –
2mx=1  x = 12m  \Rightarrow 2mx = 1\,{\text{ }} \\\ \Rightarrow {\text{x = }}\dfrac{1}{{2m}} \\\
Similarly place the above value in the equation (A)
6ny+2mx=1\Rightarrow - 6ny + 2mx = - 1
6ny+2m(12m)=1\Rightarrow - 6ny + 2m\left( {\dfrac{1}{{2m}}} \right) = - 1
Like terms from the multiplicative and the division part cancel each other.
6ny+1=1\Rightarrow - 6ny + 1 = - 1
When the term is moved from one side to another, sign also changes from negative to positive and vice-versa.
6ny=11 6ny=2  \Rightarrow - 6ny = - 1 - 1 \\\ \Rightarrow - 6ny = - 2 \\\
Minus sign cancel each other from both the sides of the equation, and make the unknown “y” the subject.
y=26n y=13n  \Rightarrow y = \dfrac{2}{{6n}} \\\ \Rightarrow y = \dfrac{1}{{3n}} \\\
Because, we assume 0<x<10 < x < 1 and 0<y<10 < y < 1
0<12m<1 and 0<13n<1\Rightarrow 0 < \dfrac{1}{{2m}} < 1{\text{ and }}0 < \dfrac{1}{{3n}} < 1
Simplification implies –
m>12 and n>13 .... (i)\Rightarrow m > \dfrac{1}{2}{\text{ and n}} > \dfrac{1}{3}{\text{ }}....{\text{ (i)}}
Now, the area of ΔCHB=12(HB×CH)\left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| .... (i)
Now, HB=xAB\overrightarrow {HB} = x\overrightarrow {AB}
HB=xm(2i6j+2k),\overrightarrow {HB} = xm(2i - 6j + 2k),
Place the values 2mx=1 mx = 12\Rightarrow 2mx = 1\,{\text{ }} \Rightarrow {\text{mx = }}\dfrac{1}{2}
HB=12(2i6j+2k) HB=(i3j+k) .... (ii)  \overrightarrow {HB} = \dfrac{1}{2}(2i - 6j + 2k) \\\ \overrightarrow {HB} = (i - 3j + k){\text{ }}....{\text{ (ii)}} \\\
Similarly, yCD=yn(6i+15j3k)y\overrightarrow {CD} = yn( - 6i + 15j - 3k)
Place the values - yn=13yn = \dfrac{1}{3}
yCD=13(6i+15j3k) yCD=(2i+5jk) .... (iii)  y\overrightarrow {CD} = \dfrac{1}{3}( - 6i + 15j - 3k) \\\ y\overrightarrow {CD} = ( - 2i + 5j - k){\text{ }}....{\text{ (iii)}} \\\
Find the cross-product by using equations (ii) and (iii)
\overrightarrow {HB} \times \overrightarrow {CH} = \left| {\begin{array}{*{20}{c}} i&j;&k; \\\ 1&{ - 3}&1 \\\ { - 2}&5&{ - 1} \end{array}} \right|
Expand the determinant-
HB×CH=i[(3)(1)5]j[(1)(1)(2)(1)+k[(1)(5)(3)(2)]\overrightarrow {HB} \times \overrightarrow {CH} = i[( - 3)( - 1) - 5] - j[(1)( - 1) - ( - 2)(1) + k[(1)(5) - ( - 3)( - 2)]
Simplify the above equation –
HB×CH=i(35)j(1+2)+k(56) HB×CH=2ijk  \overrightarrow {HB} \times \overrightarrow {CH} = i(3 - 5) - j( - 1 + 2) + k(5 - 6) \\\ \overrightarrow {HB} \times \overrightarrow {CH} = - 2i - j - k \\\
Find the magnitude –
HB×CH=2ijk HB×CH=(2)2+(1)2+(1)2  \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \left| { - 2i - j - k} \right| \\\ \Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {{{( - 2)}^2} + {{( - 1)}^2} + {{( - 1)}^2}} \\\
Square of negative terms gives the positive terms-
HB×CH=4+1+1=6\Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {4 + 1 + 1} = \sqrt 6
Now, place the above value in the equation (i)
ΔCHB=12(HB×CH) ΔCHB=12(6)  \left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| \\\ \Rightarrow \left| {\Delta CHB} \right| = \dfrac{1}{2}(\sqrt 6 ) \\\
Simplify the above equation –
ΔCHB=62\Rightarrow \left| {\Delta CHB} \right| = \dfrac{{\sqrt 6 }}{2}
Hence, from the given multiple choices- all the given options are the correct answer.
So, the correct answer is “Option D”.

Note : Always remember the properties of the cross-product and expansion of the determinant and simplify taking care of the positive and the negative sign. Also, remember the square and square-roots and its simplification for the efficient and accurate solution.