Solveeit Logo

Question

Question: A and B toss a coin alternatively, the first to show a head being the winner. If A starts the game,...

A and B toss a coin alternatively, the first to show a head

being the winner. If A starts the game, the chance of his

winning is-

A

5/8

B

½

C

1/3

D

2/3

Answer

2/3

Explanation

Solution

P(1) = P(2) = 12\frac { 1 } { 2 }

Probability of wining of A = P(1) + P(A\overline { \mathrm { A } }) P() P (1) +

P( A\overline { \mathrm { A } } ) P() P( A\overline { \mathrm { A } } ) P( B\overline { \mathrm { B } } ) P(1) + ……….. 

= P(A)1P(A)P(B)\frac { \mathrm { P } ( \mathrm { A } ) } { 1 - \mathrm { P } ( \overline { \mathrm { A } } ) \mathrm { P } ( \overline { \mathrm { B } } ) } = 12\frac { 1 } { 2 }