Solveeit Logo

Question

Question: A and B are two points. The position vector of A is \(6\mathbf{b} - 2\mathbf{a}.\) A point P divides...

A and B are two points. The position vector of A is 6b2a.6\mathbf{b} - 2\mathbf{a}. A point P divides the line AB in the ratio 1 : 2. If ab\mathbf{a} - \mathbf{b} is the position vector of P, then the position vector of B is given by

A

7a15b7\mathbf{a} - 15\mathbf{b}

B

7a+15b7\mathbf{a} + 15\mathbf{b}

C

2π/32\pi/3

D

15a+7b15\mathbf{a} + 7\mathbf{b}

Answer

7a15b7\mathbf{a} - 15\mathbf{b}

Explanation

Solution

OP=1(OB)+2(6b2a)1+2\overset{\rightarrow}{OP} = \frac{1(\overset{\rightarrow}{OB}) + 2(6\mathbf{b} - 2\mathbf{a})}{1 + 2}

3(ab)=OB+12b4aOB=7a15b\Rightarrow 3(\mathbf{a} - \mathbf{b}) = \overset{\rightarrow}{OB} + 12\mathbf{b} - 4\mathbf{a} \Rightarrow \overset{\rightarrow}{OB} = 7\mathbf{a} - 15\mathbf{b}.