Solveeit Logo

Question

Question: A and B are two points on a uniform ring of resistance 15\(6.5 \times 10^{- 6}m^{2}V^{- 1}s^{- 1}\)....

A and B are two points on a uniform ring of resistance 156.5×106m2V1s16.5 \times 10^{- 6}m^{2}V^{- 1}s^{- 1}. The <AOB = 2.5×106m2V1S12.5 \times 10^{6}m^{2}V^{- 1}S^{- 1}.The equivalent resistance between A and B is

A

vdEv_{d} \propto E

B

vdE2v_{d} \propto E^{2}

C

vdEv_{d} \propto \sqrt{E}

D

vd1Ev_{d} \propto \frac{1}{E}

Answer

vdEv_{d} \propto E

Explanation

Solution

: Resistance per unit length of ring, ρ=R2πr\rho = \frac{R}{2\pi r}

Length of sections ADB and ACB are rθr\thetaand

r(2πθ)r(2\pi - \theta)

\therefore Resistance of section ADB, R1=ρrθR_{1} = \rho r\theta

=R2πrrθ=Rθ2π= \frac{R}{2\pi r}r\theta = \frac{R\theta}{2\pi}

and resistance of section ACB, R2=ρr(2πθ)R_{2} = \rho r(2\pi - \theta)

Now, R1R_{1}and R2R_{2}are connected in parallel between A and B then

Req=R1R2R1+R2=Rθ2π×R(2πθ)2πRθRπ+R(2πθ)2π=Rθ×R(2πθ)(2π)22θ+R(2πθ)2πR_{eq} = \frac{R_{1}R_{2}}{R_{1} + R_{2}} = \frac{\frac{R\theta}{2\pi} \times \frac{R(2\pi - \theta)}{2\pi}}{\frac{R\theta}{R\pi} + \frac{R(2\pi - \theta)}{2\pi}} = \frac{\frac{R\theta \times R(2\pi - \theta)}{(2\pi)^{2}}}{\frac{2\theta + R(2\pi - \theta)}{2\pi}}Putting θ=45o=π4\theta = 45^{o} = \frac{\pi}{4} rad and R=15ΩR = 15\Omega

Req=15×π4×(2ππ4)4π2=15π4(7π4)4π2R_{eq} = \frac{15 \times \frac{\pi}{4} \times \left( 2\pi - \frac{\pi}{4} \right)}{4\pi^{2}} = \frac{\frac{15\pi}{4}\left( \frac{7\pi}{4} \right)}{4\pi^{2}}

=10564Ω=1.64Ω= \frac{105}{64}\Omega = 1.64\Omega

Req=5ΩR_{eq} = 5\Omega