Solveeit Logo

Question

Question: A and B are two independent events. The probability that both A and B occur is \(\frac { 1 } { 6 }\...

A and B are two independent events. The probability that both A and B occur is 16\frac { 1 } { 6 } and the probability that neither of them occurs is 13\frac { 1 } { 3 } . Then the probability of the two events are respectively

A

12\frac { 1 } { 2 }and 13\frac { 1 } { 3 }

B

15\frac { 1 } { 5 }and 16\frac { 1 } { 6 }

C

12\frac { 1 } { 2 }and 16\frac { 1 } { 6 }

D

23\frac { 2 } { 3 } and 14\frac { 1 } { 4 }

Answer

12\frac { 1 } { 2 }and 13\frac { 1 } { 3 }

Explanation

Solution

P(AB)=P(A)P(B)=16P ( A \cap B ) = P ( A ) \cdot P ( B ) = \frac { 1 } { 6 }

P(AˉBˉ)=13=1P(AB)P ( \bar { A } \cap \bar { B } ) = \frac { 1 } { 3 } = 1 - P ( A \cup B )

13=1[P(A)+P(B)]+16P(A)+P(B)=56\Rightarrow \frac { 1 } { 3 } = 1 - [ P ( A ) + P ( B ) ] + \frac { 1 } { 6 } \Rightarrow P ( A ) + P ( B ) = \frac { 5 } { 6 }

Hence P(A)P ( A ) and P(B)P ( B ) are 12\frac { 1 } { 2 } and 13\frac { 1 } { 3 }