Solveeit Logo

Question

Mathematics Question on Probability

AA and BB are two independent events such that P(AB)=0.8P\left(A\cup B'\right)=0.8, and P(A)=0.3P\left(A\right)=0.3 Then, P(B)P(B) is

A

27\frac{2}{7}

B

23\frac{2}{3}

C

38\frac{3}{8}

D

18\frac{1}{8}

Answer

27\frac{2}{7}

Explanation

Solution

P(AB)=P(A)+P(B)P(A)P(B)P\left(A \cup B'\right)=P\left(A\right)+P\left(B'\right)-P\left(A\right)P\left(B'\right)
0.8=0.3+P(B)0.3P(B)\therefore\, 0.8=0.3+P\left(B'\right)-0.3P\left(B'\right)
0.5=P(B)(0.7)\Rightarrow 0.5=P\left(B'\right)\left(0.7\right)
P(B)=57\Rightarrow P\left(B'\right)=\frac{5}{7}
P(B)=157\therefore P\left(B\right)=1-\frac{5}{7}
=27=\frac{2}{7}