Solveeit Logo

Question

Mathematics Question on Event

A and B are two events such that P(A)=0.54,P(B)=0.69 and P(AB)=0.35P(A)=0.54,P(B)=0.69 \text{ and } P(A∩B)=0.35. Find(i)P(AB)(ii)P(A´B´)(iii)P(AB´)(iv)P(BA´)(i)P(A∪B)(ii)P(A´∩B´)(iii)P(A∩B´)(iv)P(B∩A´)

Answer

It is given thatP(A)=0.54 P(A) = 0.54, P(B)=0.69 P(B) = 0.69, P(AB)=0.35P(A ∩ B) = 0.35
(i) We know thatP(AUB)=P(A)+P(B)P(AB)P (A U B) = P(A) + P(B) - P(A ∩ B)
P(AUB)=0.54+0.690.35=0.88∴P (A U B) = 0.54 + 0.69 - 0.35 = 0.88

(ii) AB=(AUB)A'∩ B' = (A U B)' [by De Morgan’s law]
P(AB)=P(AUB)=1P(AUB)=10.88=0.12∴P(A'∩ B') = P(A U B)' = 1 - P(A U B) = 1 - 0.88 = 0.12

(iii)P(AB)=P(A)P(AB)=0.540.35=0.19 P(A ∩ B') = P(A) - P(A ∩ B) = 0.54 - 0.35 = 0.19

(iv) We know that
n(BA)=n(B)n(AB)n(B∩A')=n(B)-n(A∩B)
n(BA)n(S)=n(B)n(s)n(AB)n(S)⇒\dfrac{n(B∩A')}{n(S)}=\dfrac{n(B)n(s)-n(A∩B)}{n(S)}
P(BA)=P(B)P(AB)∴P(B∩A')=P(B)-P(A∩B)
P(BA)=0.690.35=0.34∴P(B∩A')=0.69-0.35=0.34