Solveeit Logo

Question

Question: Identify incorrect option –...

Identify incorrect option –

A

P(YX5)=49P\left(\frac{Y}{X_5}\right)=\frac{4}{9}

B

P(ZX4)=1381P\left(\frac{Z}{X_4}\right)=\frac{13}{81}

C

P(X2k1)=P(X2k)k{1,2,3}P\left(X_{2k-1}\right)=P\left(X_{2k}\right) \forall k \in\{1,2,3\}

D

P(ZX1)=64729P\left(\frac{Z}{X_1}\right)=\frac{64}{729}

Answer

P(ZX1)=64729P\left(\frac{Z}{X_1}\right)=\frac{64}{729}

Explanation

Solution

The match ends when one player is ahead by 2 points or when 6 sets are played. A wins a set with probability p=2/3p = 2/3 and B wins with probability q=1/3q = 1/3. Let SnS_n be the score difference after nn sets (A's points - B's points). The match ends if Sn2|S_n| \ge 2 or n=6n=6.

Let's trace the possible sequences of set wins (A or B) and the state of the match. S0=0S_0 = 0. Set 1: A wins (A, S1=1S_1=1, prob pp) or B wins (B, S1=1S_1=-1, prob qq). Match continues. P(X1)=1,P(X2)=1P(X_1)=1, P(X_2)=1. Set 2: AA: S2=2S_2=2. A wins. Prob p2p^2. Match ends. AB: S2=0S_2=0. Prob pqpq. Match continues. BA: S2=0S_2=0. Prob qpqp. Match continues. BB: S2=2S_2=-2. B wins. Prob q2q^2. Match ends. Match ends in 2 sets with probability p2+q2=(2/3)2+(1/3)2=4/9+1/9=5/9p^2+q^2 = (2/3)^2+(1/3)^2 = 4/9+1/9=5/9. Match continues after 2 sets if S2=0S_2=0. Prob 2pq=2(2/3)(1/3)=4/92pq = 2(2/3)(1/3) = 4/9. P(X3)=P(match continues after 2 sets)=2pq=4/9P(X_3) = P(\text{match continues after 2 sets}) = 2pq = 4/9. P(X4)=P(match continues after 2 sets)=2pq=4/9P(X_4) = P(\text{match continues after 2 sets}) = 2pq = 4/9. (Match cannot end in 3 sets as S3S_3 would be ±1\pm 1 if S2=0S_2=0).

Set 3 (if S2=0S_2=0): ABA: S3=1S_3=1. Prob pqp=p2qpqp=p^2q. Continues. ABB: S3=1S_3=-1. Prob pqq=pq2pqq=pq^2. Continues. BAA: S3=1S_3=1. Prob qpp=qp2qpp=qp^2. Continues. BAB: S3=1S_3=-1. Prob qpq=q2pqpq=q^2p. Continues. P(S3=1S2=0)=p2q+qp22pq=2p2q2pq=pP(S_3=1 | S_2=0) = \frac{p^2q+qp^2}{2pq} = \frac{2p^2q}{2pq} = p. P(S3=1S2=0)=pq2+q2p2pq=2pq22pq=qP(S_3=-1 | S_2=0) = \frac{pq^2+q^2p}{2pq} = \frac{2pq^2}{2pq} = q.

Set 4 (if S3=±1S_3=\pm 1 and S2=0S_2=0): If S3=1S_3=1 (score 2-1 to A): A wins (score 3-1, S4=2S_4=2, A wins, ends, prob pp) or B wins (score 2-2, S4=0S_4=0, continues, prob qq). If S3=1S_3=-1 (score 1-2 to B): A wins (score 2-2, S4=0S_4=0, continues, prob pp) or B wins (score 1-3, S4=2S_4=-2, B wins, ends, prob qq). Match ends in 4 sets if S4=±2S_4=\pm 2. P(A wins in 4 sets)=P(S2=0)×P(S3=1S2=0)×P(A wins set 4S3=1)=2pq×p×p=2p3qP(\text{A wins in 4 sets}) = P(S_2=0) \times P(S_3=1 | S_2=0) \times P(\text{A wins set 4} | S_3=1) = 2pq \times p \times p = 2p^3q. P(B wins in 4 sets)=P(S2=0)×P(S3=1S2=0)×P(B wins set 4S3=1)=2pq×q×q=2pq3P(\text{B wins in 4 sets}) = P(S_2=0) \times P(S_3=-1 | S_2=0) \times P(\text{B wins set 4} | S_3=-1) = 2pq \times q \times q = 2pq^3. Match continues after 4 sets if S4=0S_4=0. P(S4=0)=P(S2=0)×[P(S3=1S2=0)P(B wins set 4S3=1)+P(S3=1S2=0)P(A wins set 4S3=1)]=2pq×[p×q+q×p]=2pq(2pq)=4p2q2P(S_4=0) = P(S_2=0) \times [P(S_3=1|S_2=0)P(\text{B wins set 4}|S_3=1) + P(S_3=-1|S_2=0)P(\text{A wins set 4}|S_3=-1)] = 2pq \times [p \times q + q \times p] = 2pq(2pq) = 4p^2q^2. P(X5)=P(S4=0)=4p2q2=4(2/3)2(1/3)2=4(4/9)(1/9)=16/81P(X_5) = P(S_4=0) = 4p^2q^2 = 4(2/3)^2(1/3)^2 = 4(4/9)(1/9) = 16/81. P(X6)=P(S4=0)=16/81P(X_6) = P(S_4=0) = 16/81. (Match cannot end in 5 sets as S5S_5 would be ±1\pm 1 if S4=0S_4=0).

Let's check the third option: P(X2k1)=P(X2k)k{1,2,3}P(X_{2k-1})=P(X_{2k}) \forall k \in\{1,2,3\}. k=1k=1: P(X1)=P(X2)P(X_1)=P(X_2). 1=11=1. Correct. k=2k=2: P(X3)=P(X4)P(X_3)=P(X_4). 4/9=4/94/9=4/9. Correct. k=3k=3: P(X5)=P(X6)P(X_5)=P(X_6). 16/81=16/8116/81=16/81. Correct. Option 3 is correct.

Now let's evaluate the conditional probabilities. P(YX5)=P(A winsat least 5 sets played)P(Y|X_5) = P(\text{A wins} | \text{at least 5 sets played}). At least 5 sets are played if S4=0S_4=0. Given S4=0S_4=0, the match continues to set 5. If S4=0S_4=0, score is 2-2. Set 5: A wins (score 3-2, S5=1S_5=1, prob pp) or B wins (score 2-3, S5=1S_5=-1, prob qq). Match continues. Set 6: If S5=1S_5=1 (score 3-2): A wins (score 4-2, S6=2S_6=2, A wins, ends, prob pp) or B wins (score 3-3, S6=0S_6=0, ends, no winner, prob qq). If S5=1S_5=-1 (score 2-3): A wins (score 3-3, S6=0S_6=0, ends, no winner, prob pp) or B wins (score 2-4, S6=2S_6=-2, B wins, ends, prob qq). Given X5X_5 (i.e., S4=0S_4=0), A wins the match if A wins set 5 AND A wins set 6 (sequence A, A from S4=0S_4=0), or if A wins in earlier sets. But the conditioning is on X5X_5, meaning the match reached set 5. So we only consider outcomes from S4=0S_4=0. Given S4=0S_4=0, A wins if the sequence of results for sets 5 and 6 is AA. P(A winsS4=0)=P(A wins set 5)P(A wins set 6S5=1)=p×p=p2=(2/3)2=4/9P(\text{A wins} | S_4=0) = P(\text{A wins set 5}) P(\text{A wins set 6} | S_5=1) = p \times p = p^2 = (2/3)^2 = 4/9. This is P(YX5)P(Y|X_5). Option 1: P(YX5)=4/9P(Y|X_5) = 4/9. Correct.

P(ZX4)=P(B winsat least 4 sets played)P(Z|X_4) = P(\text{B wins} | \text{at least 4 sets played}). At least 4 sets are played if S2=0S_2=0. Given S2=0S_2=0, the match continues to set 3. If S2=0S_2=0, score is 1-1. Set 3: A wins (S3=1S_3=1, prob pp) or B wins (S3=1S_3=-1, prob qq). Set 4: If S3=1S_3=1: A wins (S4=2S_4=2, A wins, ends, prob pp) or B wins (S4=0S_4=0, continues, prob qq). If S3=1S_3=-1: A wins (S4=0S_4=0, continues, prob pp) or B wins (S4=2S_4=-2, B wins, ends, prob qq). Set 5 (if S4=0S_4=0): A wins (S5=1S_5=1, prob pp) or B wins (S5=1S_5=-1, prob qq). Continues. Set 6 (if S5=±1S_5=\pm 1 and S4=0S_4=0): If S5=1S_5=1: A wins (S6=2S_6=2, A wins, ends, prob pp) or B wins (S6=0S_6=0, ends, no winner, prob qq). If S5=1S_5=-1: A wins (S6=0S_6=0, ends, no winner, prob pp) or B wins (S6=2S_6=-2, B wins, ends, prob qq).

Given X4X_4 (i.e., S2=0S_2=0), B wins the match if:

  1. B wins in 4 sets: B wins set 3 AND B wins set 4 (sequence BB from S2=0S_2=0). Prob q×q=q2q \times q = q^2.
  2. B wins in 6 sets: Match reaches set 5 (S4=0S_4=0, prob 2pq2pq) AND B wins set 5 (prob qq) AND B wins set 6 (prob qq). P(S4=0S2=0)=P(S3=1,B wins set 4)+P(S3=1,A wins set 4)=pq+qp=2pqP(S_4=0 | S_2=0) = P(S_3=1, \text{B wins set 4}) + P(S_3=-1, \text{A wins set 4}) = p q + q p = 2pq. P(B wins in 6 setsS2=0)=P(S4=0S2=0)×P(S5=1S4=0)×P(S6=2S5=1)=2pq×q×q=2pq3P(\text{B wins in 6 sets} | S_2=0) = P(S_4=0 | S_2=0) \times P(S_5=-1 | S_4=0) \times P(S_6=-2 | S_5=-1) = 2pq \times q \times q = 2pq^3. P(ZX4)=P(B wins in 4 setsS2=0)+P(B wins in 6 setsS2=0)=q2+2pq3P(Z|X_4) = P(\text{B wins in 4 sets} | S_2=0) + P(\text{B wins in 6 sets} | S_2=0) = q^2 + 2pq^3. q=1/3,p=2/3q=1/3, p=2/3. P(ZX4)=(1/3)2+2(2/3)(1/3)3=1/9+4/81=9/81+4/81=13/81P(Z|X_4) = (1/3)^2 + 2(2/3)(1/3)^3 = 1/9 + 4/81 = 9/81 + 4/81 = 13/81. Option 2: P(ZX4)=13/81P(Z|X_4) = 13/81. Correct.

P(ZX1)=P(B winsat least 1 set played)P(Z|X_1) = P(\text{B wins} | \text{at least 1 set played}). X1X_1 is always true, so P(ZX1)=P(Z)P(Z|X_1) = P(Z). B can win in 2, 4, or 6 sets. B wins in 2 sets (BB): q2=(1/3)2=1/9q^2 = (1/3)^2 = 1/9. B wins in 4 sets (from S2=0S_2=0, then BB): P(S2=0)×q2=2pq×q2=2pq3=2(2/3)(1/3)3=4/81P(S_2=0) \times q^2 = 2pq \times q^2 = 2pq^3 = 2(2/3)(1/3)^3 = 4/81. B wins in 6 sets (from S4=0S_4=0, then BB): P(S4=0)×q2=4p2q2×q2=4p2q4=4(2/3)2(1/3)4=4(4/9)(1/81)=16/729P(S_4=0) \times q^2 = 4p^2q^2 \times q^2 = 4p^2q^4 = 4(2/3)^2(1/3)^4 = 4(4/9)(1/81) = 16/729. P(Z)=P(B wins in 2 sets)+P(B wins in 4 sets)+P(B wins in 6 sets)P(Z) = P(\text{B wins in 2 sets}) + P(\text{B wins in 4 sets}) + P(\text{B wins in 6 sets}). P(Z)=q2+2pq3+4p2q4=(1/3)2+2(2/3)(1/3)3+4(2/3)2(1/3)4=1/9+4/81+16/729=81/729+36/729+16/729=133/729P(Z) = q^2 + 2pq^3 + 4p^2q^4 = (1/3)^2 + 2(2/3)(1/3)^3 + 4(2/3)^2(1/3)^4 = 1/9 + 4/81 + 16/729 = 81/729 + 36/729 + 16/729 = 133/729. Option 4: P(ZX1)=64/729P(Z|X_1) = 64/729. Incorrect.

The incorrect option is P(ZX1)=64729P(Z|X_1)=\frac{64}{729}.

Final check of the options: Option 1: P(YX5)=4/9P(Y|X_5) = 4/9. Correct. Option 2: P(ZX4)=13/81P(Z|X_4) = 13/81. Correct. Option 3: P(X2k1)=P(X2k)k{1,2,3}P(X_{2k-1})=P(X_{2k}) \forall k \in\{1,2,3\}. Correct. Option 4: P(ZX1)=133/729P(Z|X_1) = 133/729. The given value is 64/72964/729. Incorrect.