Question
Question: If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and $A^2 = I$, then $A^{-1} =$...
If A=[x110] and A2=I, then A−1=

A
[0110]
B
[1001]
C
[0000]
D
[1000]
Answer
[0110]
Explanation
Solution
Given A=[x110] and A2=I, we first compute A2:
A2=[x110][x110]=[x2+1xx1].
Since A2=I=[1001], we equate the elements:
- x2+1=1⇒x2=0⇒x=0
- x=0
- 1=1
Thus, A=[0110].
Since A2=I, A is its own inverse. Therefore, A−1=A=[0110].