Solveeit Logo

Question

Question: If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and $A^2 = I$, then $A^{-1} =$...

If A=[x110]A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} and A2=IA^2 = I, then A1=A^{-1} =

A

[0110]\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}

B

[1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

C

[0000]\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

D

[1000]\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}

Answer

[0110]\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}

Explanation

Solution

Given A=[x110]A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} and A2=IA^2 = I, we first compute A2A^2:

A2=[x110][x110]=[x2+1xx1]A^2 = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} x^2+1 & x \\ x & 1 \end{bmatrix}.

Since A2=I=[1001]A^2 = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, we equate the elements:

  • x2+1=1x2=0x=0x^2 + 1 = 1 \Rightarrow x^2 = 0 \Rightarrow x = 0
  • x=0x = 0
  • 1=11 = 1

Thus, A=[0110]A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.

Since A2=IA^2 = I, AA is its own inverse. Therefore, A1=A=[0110]A^{-1} = A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.