Solveeit Logo

Question

Physics Question on Alternating current

A 750 Hz, 20 V source is connected to a resistance of 100Ω100\,\Omega, an inductance of 0.1803 H and a capacitance of 10?F10 \,?F all in series. Calculate the time in which the resistance (thermal capacity 2JC12\,J^{\circ}C^{-1}) will get heated by 10C10^{\circ}C.

A

348 s

B

353 s

C

365 s

D

370 s

Answer

348 s

Explanation

Solution

As, XL=ωL=2πυL=2π?750?0.1803=849.2ΩX_{L} = \omega L = 2\pi\upsilon L = 2\pi ? 750 ? 0.1803 = 849.2\, \Omega and XC=1ωC=12πυC=12π?750?105=21.2ΩX_{C} = \frac{1}{\omega C} = \frac{1}{ 2\pi \upsilon C} = \frac{1}{2\pi ? 750 ?10^{-5}} = 21.2\, \Omega so, X=XLXC=849.221.2=828ΩX=X_{L}-X_{C} =849.2-21.2=828\Omega Hence, Z=R2+X2=(100)2+(828)2=834ΩZ = \sqrt{R^{2}+X^{2}} = \sqrt{\left(100\right)^{2} +\left(828\right)^{2}} = 834 \,\Omega Paυ=VrmsIrmscosϕ=Vrms×VrmsZ×RZP_{a\upsilon} = V_{rms}\,I_{rms} \,cos\phi = V_{rms} \times \frac{V_{rms}}{Z} \times\frac{R}{Z} i.e., Paυ=(VrmsZ)2×R=(20834)2×100=0.0575WP_{a\upsilon} = \left(\frac{V_{rms}}{Z}\right)^{2} \times R = \left(\frac{20}{834}\right)^{2}\times 100 = 0.0575\, W And as, U=P?t=mc?θU = P ? t = mc?\theta t=mc??θP=\therefore\quad t = \frac{mc??\theta}{P} = 2×100.0575\frac{2\times10}{0.0575}= 348 s