Solveeit Logo

Question

Question: A 50 watt bulb emits monochromatic red light of wavelength of 795 nm. The number of photons emitted ...

A 50 watt bulb emits monochromatic red light of wavelength of 795 nm. The number of photons emitted per second by the bulb is x × 1020^{-20}. The value of x is______. [Given: h = 6.63 × 1034^{-34} Js and c = 3.0 × 108^8 ms1^{-1}] [1 Sept, 2021 (Shift-II)]

Answer

2

Explanation

Solution

The power of the bulb is given as P=50P = 50 watt, which means it emits 50 Joules of energy per second.
The light emitted is monochromatic red light with a wavelength λ=795\lambda = 795 nm.
We are given Planck's constant h=6.63×1034h = 6.63 \times 10^{-34} Js and the speed of light c=3.0×108c = 3.0 \times 10^8 ms1^{-1}.

The energy of a single photon is given by the formula: E=hcλE = \frac{hc}{\lambda}

First, convert the wavelength from nanometers to meters: λ=795 nm=795×109 m\lambda = 795 \text{ nm} = 795 \times 10^{-9} \text{ m}

Now, calculate the energy of one photon: E=(6.63×1034 Js)×(3.0×108 ms1)795×109 mE = \frac{(6.63 \times 10^{-34} \text{ Js}) \times (3.0 \times 10^8 \text{ ms}^{-1})}{795 \times 10^{-9} \text{ m}} E=6.63×3.0795×1034+8(9) JE = \frac{6.63 \times 3.0}{795} \times 10^{-34 + 8 - (-9)} \text{ J} E=19.89795×1034+8+9 JE = \frac{19.89}{795} \times 10^{-34 + 8 + 9} \text{ J} E=19.89795×1017 JE = \frac{19.89}{795} \times 10^{-17} \text{ J}

The number of photons emitted per second, NN, is equal to the total energy emitted per second (power PP) divided by the energy of a single photon (EE): N=PEN = \frac{P}{E} N=50 J/s19.89795×1017 JN = \frac{50 \text{ J/s}}{\frac{19.89}{795} \times 10^{-17} \text{ J}} N=50×79519.89×1017 s1N = \frac{50 \times 795}{19.89} \times 10^{17} \text{ s}^{-1} N=3975019.89×1017 s1N = \frac{39750}{19.89} \times 10^{17} \text{ s}^{-1}

Now, perform the division: 3975019.891998.4917\frac{39750}{19.89} \approx 1998.4917

So, N1998.4917×1017 s1N \approx 1998.4917 \times 10^{17} \text{ s}^{-1}

The question states that the number of photons emitted per second is x×1020x \times 10^{-20}. Based on typical calculations and the similar question provided, the exponent 1020^{-20} is highly likely a typo and should be 1020^{20}. Assuming the question meant x×1020x \times 10^{20}:

We have N1998.4917×1017N \approx 1998.4917 \times 10^{17}. We need to express this in the form x×1020x \times 10^{20}. N=1998.4917×1017=1998.4917×1017×103103=1998.4917103×1017×103N = 1998.4917 \times 10^{17} = 1998.4917 \times 10^{17} \times \frac{10^3}{10^3} = \frac{1998.4917}{10^3} \times 10^{17} \times 10^3 N=1.9984917×1020N = 1.9984917 \times 10^{20}

So, 1.9984917×1020=x×10201.9984917 \times 10^{20} = x \times 10^{20}. This gives x=1.9984917x = 1.9984917.

Since this is likely an integer answer type question, we should round xx to the nearest integer. x1.9984917x \approx 1.9984917 rounded to the nearest integer is 2.

If we strictly follow the given exponent 102010^{-20}, then: 1.9984917×1020=x×10201.9984917 \times 10^{20} = x \times 10^{-20} x=1.9984917×10201020=1.9984917×1020(20)=1.9984917×1040x = \frac{1.9984917 \times 10^{20}}{10^{-20}} = 1.9984917 \times 10^{20 - (-20)} = 1.9984917 \times 10^{40} This value of xx is extremely large and unrealistic in this context. Therefore, we proceed with the assumption that the exponent was intended to be 20.

Assuming the question intended x×1020x \times 10^{20}, the value of xx is approximately 1.9984917. Rounding to the nearest integer gives x=2x=2.

The final answer is 2.

Explanation of the solution:

  1. Calculate the energy of a single photon using the formula E=hcλE = \frac{hc}{\lambda}, converting wavelength to meters.
  2. Calculate the number of photons emitted per second by dividing the total power of the bulb by the energy of a single photon: N=PEN = \frac{P}{E}.
  3. Express the calculated number of photons NN in the form x×1020x \times 10^{20} (assuming the likely typo in the question's exponent) to find the value of xx.
  4. Round the value of xx to the nearest integer as expected for an integer answer type question.