Solveeit Logo

Question

Question: A 5 m long aluminum wire \((Y = 7 \times 10^{10}N/m^{2})\) of diameter 3 mm supports a 40 kg mass. I...

A 5 m long aluminum wire (Y=7×1010N/m2)(Y = 7 \times 10^{10}N/m^{2}) of diameter 3 mm supports a 40 kg mass. In order to have the same elongation in a copper wire (Y=12×1010N/m2)(Y = 12 \times 10^{10}N/m^{2}) of the same length under the same weight, the diameter should now be, in mm

A

1.75

B

2.0

C

2.3

D

5.0

Answer

2.3

Explanation

Solution

l=FLπr2Y=4FLπd2Yl = \frac{FL}{\pi r^{2}Y} = \frac{4FL}{\pi d^{2}Y} [As r=d/2r = d/2]

If the elongation in both wires (of same length) are same under the same weight then d2Y=d^{2}Y = constant

(dCudAl)2=YAlYCudCu=dAl×YAlYCu=3×7×101012×1010=2.29mm\left( \frac{d_{Cu}}{d_{Al}} \right)^{2} = \frac{Y_{Al}}{Y_{Cu}} \Rightarrow d_{Cu} = d_{Al} \times \sqrt{\frac{Y_{Al}}{Y_{Cu}}} = 3 \times \sqrt{\frac{7 \times 10^{10}}{12 \times 10^{10}}} = 2.29mm