Solveeit Logo

Question

Physics Question on mechanical properties of solids

A 5 m aluminium wire (Y=7×1010Nm2)(Y = 7\times10^{10} Nm^{-2}) of diameter 3 mm supports a 40 kg mass. In order to have the same elongation in a copper wire (T=12×1010Nm2)(T =12\times10^{10}Nm^{-2}) of the same length under the same weight, the diameter (in mm) should be

A

1.75

B

2

C

2.3

D

5

Answer

2.3

Explanation

Solution

Young's modulus Y=stressstrain=F/Al/L=F.Lπr2lY=\frac{stress}{strain}=\frac{F/A}{l/L}=\frac{F . L}{\pi r^2 l} Given Y1=7×1010Nm2Y_1=7\times10^{10} Nm^{-2} Y2=12×1010Nm2Y_2=12\times10^{10} Nm^{-2} r1=D12=32mm,r2=D32r_1=\frac{D_1}{2}=\frac{3}{2}mm,r_2=\frac {D_3}{2} = Taking ratio of Young's modulus and putting r=D2,wegetr=\frac{D}{2}, we get Y2Y1=(D1D2)2\frac{Y_2}{Y_1}=\left(\frac{D_1}{D_2}\right)^2 12×10107×1010=(3D2)2\frac{12\times10^{10}}{7\times10^{10}}=\left(\frac{3}{D_2}\right)^2 3D2=127\Rightarrow \frac{3}{D_2}= \sqrt{\frac{12}{7}} D2=37122.3mm\Rightarrow D_2=3\sqrt{\frac{7}{12}}\approx 2.3 mm