Solveeit Logo

Question

Question: If $\Delta = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$, then the value of $...

If Δ=abccabbca\Delta = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}, then the value of a2bcb2cac2abc2aba2bcb2cab2cac2aba2bc\begin{vmatrix} a^2-bc & b^2-ca & c^2-ab \\ c^2-ab & a^2-bc & b^2-ca \\ b^2-ca & c^2-ab & a^2-bc \end{vmatrix} is-

A

Δ2\Delta^2

B

2Δ22\Delta^2

C

Δ3\Delta^3

D

none of

Answer

Δ2\Delta^2

Explanation

Solution

To solve this problem, we need to evaluate the given determinant in terms of Δ\Delta.

Let the first matrix be MM: M=(abccabbca)M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} The determinant Δ=M=abccabbca\Delta = |M| = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}.

Now, let's look at the second determinant, let's call it DD': D=a2bcb2cac2abc2aba2bcb2cab2cac2aba2bcD' = \begin{vmatrix} a^2-bc & b^2-ca & c^2-ab \\ c^2-ab & a^2-bc & b^2-ca \\ b^2-ca & c^2-ab & a^2-bc \end{vmatrix}

We need to find the cofactors of the matrix MM. The cofactor AijA_{ij} of an element mijm_{ij} is given by (1)i+j(-1)^{i+j} times the determinant of the submatrix obtained by removing the ii-th row and jj-th column.

Let's calculate the cofactors of MM: A11=(1)1+1abca=a2bcA_{11} = (-1)^{1+1} \begin{vmatrix} a & b \\ c & a \end{vmatrix} = a^2 - bc A12=(1)1+2cbba=(cab2)=b2caA_{12} = (-1)^{1+2} \begin{vmatrix} c & b \\ b & a \end{vmatrix} = -(ca - b^2) = b^2 - ca A13=(1)1+3cabc=c2abA_{13} = (-1)^{1+3} \begin{vmatrix} c & a \\ b & c \end{vmatrix} = c^2 - ab

A21=(1)2+1bcca=(abc2)=c2abA_{21} = (-1)^{2+1} \begin{vmatrix} b & c \\ c & a \end{vmatrix} = -(ab - c^2) = c^2 - ab A22=(1)2+2acba=a2bcA_{22} = (-1)^{2+2} \begin{vmatrix} a & c \\ b & a \end{vmatrix} = a^2 - bc A23=(1)2+3abbc=(acb2)=b2caA_{23} = (-1)^{2+3} \begin{vmatrix} a & b \\ b & c \end{vmatrix} = -(ac - b^2) = b^2 - ca

A31=(1)3+1bcab=b2ac=b2caA_{31} = (-1)^{3+1} \begin{vmatrix} b & c \\ a & b \end{vmatrix} = b^2 - ac = b^2 - ca A32=(1)3+2accb=(abc2)=c2abA_{32} = (-1)^{3+2} \begin{vmatrix} a & c \\ c & b \end{vmatrix} = -(ab - c^2) = c^2 - ab A33=(1)3+3abca=a2bcA_{33} = (-1)^{3+3} \begin{vmatrix} a & b \\ c & a \end{vmatrix} = a^2 - bc

Now, let's form the cofactor matrix CC of MM: C=(A11A12A13A21A22A23A31A32A33)=(a2bcb2cac2abc2aba2bcb2cab2cac2aba2bc)C = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} = \begin{pmatrix} a^2-bc & b^2-ca & c^2-ab \\ c^2-ab & a^2-bc & b^2-ca \\ b^2-ca & c^2-ab & a^2-bc \end{pmatrix}

Notice that the determinant DD' is exactly the determinant of the cofactor matrix CC, i.e., D=CD' = |C|.

We know a property of determinants and adjoint matrices: For any square matrix MM of order nn, the determinant of its adjoint matrix, adj(M)|\text{adj}(M)|, is equal to Mn1|M|^{n-1}. Also, the adjoint matrix is the transpose of the cofactor matrix, i.e., adj(M)=CT\text{adj}(M) = C^T. Therefore, adj(M)=CT|\text{adj}(M)| = |C^T|.

Since the determinant of a matrix is equal to the determinant of its transpose, CT=C|C^T| = |C|. So, we have D=C=CT=adj(M)D' = |C| = |C^T| = |\text{adj}(M)|.

For the given matrix MM, its order is n=3n=3. Thus, adj(M)=M31=M2|\text{adj}(M)| = |M|^{3-1} = |M|^2. Since M=Δ|M| = \Delta, we have adj(M)=Δ2|\text{adj}(M)| = \Delta^2.

Combining these results, we get: D=Δ2D' = \Delta^2.

The final answer is Δ2\Delta^2.