Solveeit Logo

Question

Question: If $(2i + 6i + 27k) \times (i + \lambda j + \mu k) = 0$ then $\lambda$ and $\mu$ are respectively....

If (2i+6i+27k)×(i+λj+μk)=0(2i + 6i + 27k) \times (i + \lambda j + \mu k) = 0 then λ\lambda and μ\mu are respectively.

A

172,3\frac{17}{2}, 3

B

3,1723, \frac{17}{2}

C

3,2723, \frac{27}{2}

D

272,3\frac{27}{2}, 3

Answer

λ=3\lambda = 3 and μ=272\mu = \frac{27}{2}

Explanation

Solution

Vectors A\vec{A} and B\vec{B} are collinear as their cross product is zero.
Equate B=kA\vec{B}=k\vec{A}.
From the ii-component, k=12k=\frac{1}{2}.
Thus, λ=3\lambda=3 and μ=272\mu=\frac{27}{2}.