Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A 400pF400\,pF capacitor is charged by a 100V100\,V supply. How much electrostatic energy is lost in the process of disconnecting from the supply and connecting another uncharged 400pF400\,pF capacitor?

A

105J10^{-5}\,\,J

B

106J10^{-6}\,\,J

C

107J10^{-7}\,\,J

D

104J10^{-4}\,\,J

Answer

106J10^{-6}\,\,J

Explanation

Solution

C=400×1012FC=400 \times 10^{-12} F
V=100VV=100\, V
Initially energy stored =12CV2=\frac{1}{2} C V^{2}
=12400×1012×(102)2=\frac{1}{2} 400 \times 10^{-12} \times\left(10^{2}\right)^{2}
=12×4×1010×104=\frac{1}{2} \times 4 \times 10^{-10} \times 10^{4}
=2×106J=2 \times 10^{-6} J
Q=CV=4×1010×100\Rightarrow Q=C V=4 \times 10^{-10} \times 100
=4×108C=4 \times 10^{-8} C
\Rightarrow By again connecting the charged capacitor with a uncharged ideal capacitor.
\Rightarrow Now, the charge QQ will divide into two capacitors.
\Rightarrow As VV and CC are same for both, QQ' will be same for both,
\Rightarrow So Q=Q2=2×108CQ'=\frac{Q}{2}=2 \times 10^{-8} C
\Rightarrow So, energy stored in both the capacitors =((Q)22C)=(Q)22C=\left(\frac{\left(Q'\right)^{2}}{2 C}\right)=\frac{\left(Q'\right)^{2}}{2 C}
=(2×108)8×1010=106J=\frac{\left(2 \times 10^{-8}\right)}{8 \times 10^{-10}}=10^{-6} J
So energy lost =2×1060.25×106=2 \times 10^{-6}-0.25 \times 10^{-6}
=0.75×106J106J=0.75 \times 10^{-6} J \approx 10^{-6} J