Solveeit Logo

Question

Question: A 4 kg particle is moving along the x-axis under the action of the force F = -\(\left( \frac { \pi ^...

A 4 kg particle is moving along the x-axis under the action of the force F = -(π216)\left( \frac { \pi ^ { 2 } } { 16 } \right)x N. When t = 2s, the particle passes through the origin and when t = 10s, its speed is 4√2 m/s. The amplitude of the motion is :

A

322π\frac { 32 \sqrt { 2 } } { \pi }m/s

B

16π\frac { 16 } { \pi }m/s

C

4π\frac { 4 } { \pi }m/s

D

162π\frac { 16 \sqrt { 2 } } { \pi }m/s

Answer

322π\frac { 32 \sqrt { 2 } } { \pi }m/s

Explanation

Solution

a = - (π264)\left( \frac { \pi ^ { 2 } } { 64 } \right)x

⇒ ω = π264=π8\sqrt { \frac { \pi ^ { 2 } } { 64 } } = \frac { \pi } { 8 }

T = 2πω\frac { 2 \pi } { \omega } =16 sec.

There is a time difference of between t = 2 sec. to

t = 10 sec. Hence particle is again passing through mean

position of SHM where its speed is maximum.

i.e. Vmax = Aω = 4√2

A = 322π\frac { 32 \sqrt { 2 } } { \pi }m.