Solveeit Logo

Question

Physics Question on Work-energy theorem

A 4kg4 \,kg object has a velocity, 3.0i^m/s3.0\, \hat{ i }\, m / s at some instant. Eights seconds later, its velocity is (8.0i^+10.0j^)m/s(8.0 \,\hat{ i }+10.0\, \hat{ j }) \,m / s. Assuming that the object is subjected to a constant net force, the magnitude of the force is

A

552N\frac{5 \sqrt{5}}{2} N

B

538N\frac{5 \sqrt{3}}{8} N

C

853N\frac{8 \sqrt{5}}{3} N

D

1037N\frac{10 \sqrt{3}}{7} N

Answer

552N\frac{5 \sqrt{5}}{2} N

Explanation

Solution

Given, mass of an object, m=4kg,u=3im/sm=4 \,kg , u =3 i \,m / s
v=(8i^+10j^)m/sv =(8 \hat{ i }+10 \hat{ j }) m / s and time t=8st=8 \,s
As we know, equation of the motion
v=u+atv = u + a t
8i^+10j^=3i^+a×8\Rightarrow \, 8 \hat{ i }+10 \hat{ j }=3 \hat{ i }+ a \times 8
a=18(5i^+10j^)m/s2\Rightarrow \, a =\frac{1}{8}(5 \hat{ i }+10 \hat{ j }) m / s ^{2}
So, force F=maF =m a
F=48(i^+10j^)=12(i^+10j^)NF =\frac{4}{8}(\hat{ i }+10 \hat{ j })=\frac{1}{2}(\hat{ i }+10 \hat{ j }) N
F=1252+102\Rightarrow\, F=\frac{1}{2} \sqrt{5^{2}+10^{2}}
=552N=\frac{5 \sqrt{5}}{2} \,N