Solveeit Logo

Question

Physics Question on work, energy and power

A 4 kg mass and a 1 kg mass are moving with equal energies. The ratio of the magnitude of their linear momenta is

A

1 : 2

B

2 : 1

C

1 : 1

D

4 : 1

Answer

2 : 1

Explanation

Solution

KE1 = KE2
Using the formula for kinetic energy:
12\frac {1}{2} . m1 . v12 = 12\frac {1}{2} . m2 . v22
Since the energies are equal, we have:
m1 . v12 = m2 . v22
Rearranging the equation:
(v1v2)2(\frac {v_1}{v_2})^2 = m2m1\frac {m_2}{m_1}
Taking the square root of both sides:
v1v2\frac {v_1}{v_2}= m2m1\sqrt {\frac {m_2}{m_1}}
Now we can find the ratio of the magnitudes of their linear momenta:
p1p2\frac {p_1}{p_2}= m1.v1m2.v2\frac {m_1.v_1}{m_2.v_2}
Substituting v1v2\frac {v_1}{v_2} = m2/m1\sqrt{m_2 / m_1}:
p1p2\frac {p_1}{p_2} = m1.v1m2.v2\frac {m_1.v_1}{m_2.v_2})
p1p2\frac {p_1}{p_2}= m1.v1m2.v2\frac {m_1.v_1}{m_2.v_2} . m1m2\sqrt {\frac {m_1}{m_2}}
Canceling out v1 and v2:
p1p2\frac {p_1}{p_2} = m1/m2m1/m2\frac {m_1/m_2}{\sqrt {m_1/m_2}} = m2/m1\sqrt{m_2 / m_1}
Given that m1 = 4 kg and m2 = 1 kg:
p1p2\frac {p_1}{p_2} = 14\sqrt{\frac {1} {4}}
p1p2\frac {p_1}{p_2} = 12\frac {1}{2}
Therefore, the ratio of the magnitudes of their linear momenta is (B) 2 : 1.