Solveeit Logo

Question

Question: If A (0,α) and B (0,β) , α, β > 0 are two vertices of a variable triangle ABC where the vertex C (x,...

If A (0,α) and B (0,β) , α, β > 0 are two vertices of a variable triangle ABC where the vertex C (x, 0) is variable. The value of x for which ∠ACB is maximum is :

A

α+β2\frac{α+β}{2}

B

αβ\sqrt{αβ}

C

2αβα+β\frac{2αβ}{α+β}

D

αβα+β\frac{αβ}{α+β}

Answer

αβ\sqrt{αβ}

Explanation

Solution

Let the coordinates of the vertices be A(0, α), B(0, β), and C(x, 0). The slope of line AC is m1=0αx0=αxm_1 = \frac{0 - \alpha}{x - 0} = -\frac{\alpha}{x}. The slope of line BC is m2=0βx0=βxm_2 = \frac{0 - \beta}{x - 0} = -\frac{\beta}{x}.

Let ∠ACB = θ. The tangent of the angle between two lines is given by: tanθ=m2m11+m1m2\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|

Substituting the slopes: tanθ=βx(αx)1+(αx)(βx)=αβx1+αβx2\tan \theta = \left| \frac{-\frac{\beta}{x} - (-\frac{\alpha}{x})}{1 + (-\frac{\alpha}{x})(-\frac{\beta}{x})} \right| = \left| \frac{\frac{\alpha - \beta}{x}}{1 + \frac{\alpha \beta}{x^2}} \right| tanθ=(αβ)xx2+αβ\tan \theta = \left| \frac{(\alpha - \beta)x}{x^2 + \alpha \beta} \right|

Assuming α ≠ β (otherwise ∠ACB = 0), and considering x > 0, we have tanθ=αβxx2+αβ\tan \theta = \frac{|\alpha - \beta| x}{x^2 + \alpha \beta}. To maximize ∠ACB, we need to maximize tanθ\tan \theta. This is equivalent to maximizing the term xx2+αβ\frac{x}{x^2 + \alpha \beta}. This can be done by minimizing the reciprocal expression x2+αβx=x+αβx\frac{x^2 + \alpha \beta}{x} = x + \frac{\alpha \beta}{x}.

Using the AM-GM inequality for x>0x > 0: x+αβx2xαβxx + \frac{\alpha \beta}{x} \ge 2 \sqrt{x \cdot \frac{\alpha \beta}{x}} x+αβx2αβx + \frac{\alpha \beta}{x} \ge 2 \sqrt{\alpha \beta}

The minimum value of x+αβxx + \frac{\alpha \beta}{x} is 2αβ2 \sqrt{\alpha \beta}, which occurs when x=αβxx = \frac{\alpha \beta}{x}. x2=αβx^2 = \alpha \beta x=αβx = \sqrt{\alpha \beta} (since we consider x > 0).

Thus, ∠ACB is maximum when x=αβx = \sqrt{\alpha \beta}.