Question
Question: If $S_n = \frac{1 \cdot 2}{3!} + \frac{2 \cdot 2^2}{4!} + \frac{3 \cdot 2^3}{5!} + \dots$ upto n ter...
If Sn=3!1⋅2+4!2⋅22+5!3⋅23+… upto n terms then the sum of the infinite terms is :

A
1
B
32
C
e
D
4π
Answer
1
Explanation
Solution
We are given
S=n=1∑∞(n+2)!n2n.Notice that
(n+1)!2n−(n+2)!2n+1=(n+2)!2n[(n+2)−2]=(n+2)!n2n.Thus, the nth term telescopes as:
Tn=(n+1)!2n−(n+2)!2n+1.Summing from n=1 to N:
SN=n=1∑N((n+1)!2n−(n+2)!2n+1)=2!21−(N+2)!2N+1.Taking the limit as N→∞ (and noting (N+2)!2N+1→0):
S=2!2=22=1.Brief Explanation:
Express the nth term as a telescoping difference, sum up the series, and take the limit to find S=1.