Solveeit Logo

Question

Question: If $S_n = \frac{1 \cdot 2}{3!} + \frac{2 \cdot 2^2}{4!} + \frac{3 \cdot 2^3}{5!} + \dots$ upto n ter...

If Sn=123!+2224!+3235!+S_n = \frac{1 \cdot 2}{3!} + \frac{2 \cdot 2^2}{4!} + \frac{3 \cdot 2^3}{5!} + \dots upto n terms then the sum of the infinite terms is :

A

1

B

23\frac{2}{3}

C

ee

D

π4\frac{\pi}{4}

Answer

1

Explanation

Solution

We are given

S=n=1n2n(n+2)!.S = \sum_{n=1}^{\infty} \frac{n\,2^n}{(n+2)!}.

Notice that

2n(n+1)!2n+1(n+2)!=2n(n+2)![(n+2)2]=n2n(n+2)!.\frac{2^n}{(n+1)!} - \frac{2^{n+1}}{(n+2)!} = \frac{2^n}{(n+2)!}\Big[(n+2)-2\Big] = \frac{n\,2^n}{(n+2)!}.

Thus, the nthn^{\text{th}} term telescopes as:

Tn=2n(n+1)!2n+1(n+2)!.T_n = \frac{2^n}{(n+1)!} - \frac{2^{n+1}}{(n+2)!}.

Summing from n=1n = 1 to NN:

SN=n=1N(2n(n+1)!2n+1(n+2)!)=212!2N+1(N+2)!.S_N = \sum_{n=1}^N \left(\frac{2^n}{(n+1)!} - \frac{2^{n+1}}{(n+2)!}\right) = \frac{2^1}{2!} - \frac{2^{N+1}}{(N+2)!}.

Taking the limit as NN\to\infty (and noting 2N+1(N+2)!0\frac{2^{N+1}}{(N+2)!}\to 0):

S=22!=22=1.S = \frac{2}{2!} = \frac{2}{2} = 1.

Brief Explanation:
Express the nthn^{\text{th}} term as a telescoping difference, sum up the series, and take the limit to find S=1S = 1.