Solveeit Logo

Question

Question: Let $\vec{a}$ = i-2j+k and $\vec{b}$ = i-j+k be two vectors. If $\vec{c}$ is a vector such that $\ve...

Let a\vec{a} = i-2j+k and b\vec{b} = i-j+k be two vectors. If c\vec{c} is a vector such that b\vec{b}xc\vec{c} = b\vec{b}xa\vec{a} and c\vec{c}.a\vec{a} = 0 then c\vec{c}.b\vec{b} is equal to

A

32\frac{3}{2}

B

-32\frac{3}{2}

C

12\frac{1}{2}

D

-12\frac{1}{2}

Answer

-12\frac{1}{2}

Explanation

Solution

Given

a=i2j+k,b=ij+k\vec{a} = i - 2j + k,\quad \vec{b} = i - j + k

and conditions

b×c=b×aandca=0.\vec{b} \times \vec{c} = \vec{b} \times \vec{a} \quad \text{and} \quad \vec{c}\cdot \vec{a} = 0.

Since

b×c=b×a    b×(ca)=0,\vec{b} \times \vec{c} = \vec{b} \times \vec{a} \implies \vec{b} \times (\vec{c}-\vec{a}) = \vec{0},

we conclude that

ca=λborc=a+λb.\vec{c}-\vec{a} = \lambda \vec{b} \quad \text{or} \quad \vec{c} = \vec{a} + \lambda \vec{b}.

Using ca=0\vec{c}\cdot\vec{a} = 0:

(a+λb)a=0    aa+λ(ab)=0.(\vec{a} + \lambda \vec{b})\cdot \vec{a} = 0 \implies \vec{a}\cdot\vec{a} + \lambda (\vec{a}\cdot\vec{b}) = 0.

Compute:

aa=12+(2)2+12=6,ab=(1)(1)+(2)(1)+(1)(1)=4.\vec{a}\cdot\vec{a} = 1^2 + (-2)^2 + 1^2 = 6, \quad \vec{a}\cdot\vec{b} = (1)(1) + (-2)(-1) + (1)(1) = 4.

Thus,

6+4λ=0    λ=64=32.6 + 4\lambda = 0 \implies \lambda = -\frac{6}{4} = -\frac{3}{2}.

Now, find cb\vec{c}\cdot \vec{b}:

cb=(a+λb)b=ab+λ(bb).\vec{c}\cdot\vec{b} = (\vec{a} + \lambda \vec{b})\cdot \vec{b} = \vec{a}\cdot\vec{b} + \lambda (\vec{b}\cdot\vec{b}).

We already have ab=4\vec{a}\cdot\vec{b}=4. Also,

bb=12+(1)2+12=3.\vec{b}\cdot\vec{b} = 1^2 + (-1)^2 + 1^2 = 3.

Thus,

cb=4+(32)(3)=492=892=12.\vec{c}\cdot\vec{b} = 4 + \left(-\frac{3}{2}\right)(3) = 4 - \frac{9}{2} = \frac{8-9}{2} = -\frac{1}{2}.