Question
Question: A \(35\)mm film is to be projected on a \(20\)m wide screen situated at a distance of \(40\)m from t...
A 35mm film is to be projected on a 20m wide screen situated at a distance of 40m from the film projector. Calculate the distance of the film from the projection lens and focal length of the projection lens.
A. 7cm,70mm
B. 6cm,60mm
C. 5cm,50mm
D. 4cm,40mm
Solution
As in case of projector, lenses are used. To find the distance of film from a projection lens, magnification of the lens is to be used and for focal length, lens formula can be used.
Formula used:
(i) Magnification of lens =+uv=OI
(ii) Lens formula
vI−uI=fI
Where u = distance of object from the lens
v = distance of image from the lens
f = focal length of the lens
Complete step by step answer:
The film to be projected using a projector acts as the object and the lens in the projector will help in image formation that is for projecting the film on the screen.
Now, magnification is given by
m=sizeofobjectsizeofimage=OI .….(1)
Where I = size of image
And O = size of object
Also, in case of lenses, magnification is
m=+uv …..(2)
Where v is distance of image from lens and u is distance of object from lens.
So, from (1) and (2), we can say that
OI=+uv ….(3)
As in this case,
Size of object, O = Size of film = 35mm
⇒ O=35×10−3m
and size of Image, I = Size of the projector
⇒ I= 20m
v = distance between screen and the projector as image will form on screen.
U = distance of film from the projection lens.
Putting all these values in equation (3), we get
−35×10−3m20m=+u40m
⇒ u=−2040×35×10−3
⇒ u=−2×35×10−3
⇒ u=−70×10−3m=−0.07m
⇒ u=7cm
Now, the lens formula is given by
v1−u1=f1⇒40001−−71=40001+71
⇒ f1⇒4000×7+7+4000⇒f1=(4000)×74007
⇒ f=40074000×7⇒f=7cm(approx)=70mm
∴ the focal length of projection lens is 70mm
So, the correct answer is “Option A”.
Note:
As u is the negative, this indicates that the object is placed in front of the projector lens. The values of I and O are in accordance with sign conventions.