Question
Question: Let $\overrightarrow{V}=2\hat{i}+\hat{j}-\hat{k}$, $\overrightarrow{W}=\hat{i}+3\hat{k}$, $|\overrig...
Let V=2i^+j^−k^, W=i^+3k^, ∣U∣=2. If U is a vector in x-y plane, then greatest value of ([UVW])2 is -

232
340
236
312
232
Solution
The scalar triple product [UVW] is given by U⋅(V×W).
First, calculate the cross product V×W: V=2i^+j^−k^ W=i^+3k^=i^+0j^+3k^ V×W=i^21j^10k^−13=i^(1⋅3−(−1)⋅0)−j^(2⋅3−(−1)⋅1)+k^(2⋅0−1⋅1) =i^(3)−j^(6+1)+k^(0−1)=3i^−7j^−k^.
Let P=V×W=3i^−7j^−k^. We are given that U is a vector in the x-y plane and ∣U∣=2. Let U=uxi^+uyj^. The condition ∣U∣=2 means ux2+uy2=2, or ux2+uy2=4.
The scalar triple product is [UVW]=U⋅P=(uxi^+uyj^)⋅(3i^−7j^−k^) =ux(3)+uy(−7)+0(−1)=3ux−7uy.
We want to find the greatest value of ([UVW])2=(3ux−7uy)2, subject to the constraint ux2+uy2=4.
We can use the Cauchy-Schwarz inequality. For two vectors a=(a1,a2) and b=(b1,b2), (a⋅b)2≤∣a∣2∣b∣2. Let a=(ux,uy) and b=(3,−7). Then a⋅b=3ux−7uy. ∣a∣2=ux2+uy2=4. ∣b∣2=32+(−7)2=9+49=58.
Applying the Cauchy-Schwarz inequality: (3ux−7uy)2≤(ux2+uy2)(32+(−7)2) (3ux−7uy)2≤(4)(58) (3ux−7uy)2≤232.
The maximum value of (3ux−7uy)2 is 232.
Alternatively, using parametrization: Let ux=2cosθ and uy=2sinθ. 3ux−7uy=3(2cosθ)−7(2sinθ)=6cosθ−14sinθ. The expression acosθ+bsinθ has a maximum value of a2+b2 and a minimum value of −a2+b2. Here, a=6 and b=−14. The maximum value of 6cosθ−14sinθ is 62+(−14)2=36+196=232.
So, the value of (3ux−7uy)2 ranges from 0 to (232)2=232. The greatest value is 232.