Solveeit Logo

Question

Question: Three blocks A, B and C each of mass 4 kg are attached as shown in figure. Both the wires has equal ...

Three blocks A, B and C each of mass 4 kg are attached as shown in figure. Both the wires has equal cross sectional area 5 x 10-7 m². The surface is smooth. Find the longitudinal strain in each wire if Young modulus of both the wires is 2 x 10¹¹ N/m² (Take g = 10 m/s²)

Answer

The longitudinal strain in wire 1 is 43×104\frac{4}{3} \times 10^{-4} and in wire 2 is 83×104\frac{8}{3} \times 10^{-4}.

  • Strain in wire 1: 1.333×1041.333 \times 10^{-4}
  • Strain in wire 2: 2.667×1042.667 \times 10^{-4}
Explanation

Solution

Explanation of the Solution:

  1. Analyze the System and Forces:

    • Let the mass of each block be m=4 kgm = 4 \text{ kg}.
    • The surface is smooth, so there is no friction.
    • The system (blocks A, B, and C) will accelerate. Let the acceleration be aa.
    • Let T1T_1 be the tension in wire 1 (between A and B).
    • Let T2T_2 be the tension in wire 2 (between B and C).
  2. Apply Newton's Second Law to Each Block:

    • For Block A: The only horizontal force is T1T_1. T1=maT_1 = m a (Equation 1)
    • For Block B: The forces are T2T_2 to the right and T1T_1 to the left. T2T1=maT_2 - T_1 = m a (Equation 2)
    • For Block C: The forces are its weight mgmg downwards and tension T2T_2 upwards. mgT2=mamg - T_2 = m a (Equation 3)
  3. Solve for Acceleration (aa) and Tensions (T1,T2T_1, T_2):

    • Substitute (1) into (2): T2ma=ma    T2=2maT_2 - ma = ma \implies T_2 = 2ma.
    • Substitute T2=2maT_2 = 2ma into (3): mg2ma=ma    mg=3mamg - 2ma = ma \implies mg = 3ma.
    • Since m0m \neq 0, we get a=g3a = \frac{g}{3}.
    • Given g=10 m/s2g = 10 \text{ m/s}^2, a=103 m/s2a = \frac{10}{3} \text{ m/s}^2.
    • Now find tensions:
      • T1=ma=4 kg×103 m/s2=403 NT_1 = ma = 4 \text{ kg} \times \frac{10}{3} \text{ m/s}^2 = \frac{40}{3} \text{ N}.
      • T2=2ma=2×4 kg×103 m/s2=803 NT_2 = 2ma = 2 \times 4 \text{ kg} \times \frac{10}{3} \text{ m/s}^2 = \frac{80}{3} \text{ N}.
  4. Calculate Longitudinal Strain for Each Wire:

    • Longitudinal strain (ϵ\epsilon) is given by ϵ=StressYoung’s Modulus=TensionArea×YoungsModulus\epsilon = \frac{\text{Stress}}{\text{Young's Modulus}} = \frac{Tension}{Area \times Young's Modulus}.

    • Given cross-sectional area A=5×107 m2A = 5 \times 10^{-7} \text{ m}^2.

    • Given Young's modulus Y=2×1011 N/m2Y = 2 \times 10^{11} \text{ N/m}^2.

    • The product AY=(5×107 m2)×(2×1011 N/m2)=10×104 N=105 NAY = (5 \times 10^{-7} \text{ m}^2) \times (2 \times 10^{11} \text{ N/m}^2) = 10 \times 10^4 \text{ N} = 10^5 \text{ N}.

    • Strain in Wire 1 (ϵ1\epsilon_1): ϵ1=T1AY=40/3 N105 N=403×105=43×104\epsilon_1 = \frac{T_1}{AY} = \frac{40/3 \text{ N}}{10^5 \text{ N}} = \frac{40}{3 \times 10^5} = \frac{4}{3} \times 10^{-4}. ϵ11.333×104\epsilon_1 \approx 1.333 \times 10^{-4}.

    • Strain in Wire 2 (ϵ2\epsilon_2): ϵ2=T2AY=80/3 N105 N=803×105=83×104\epsilon_2 = \frac{T_2}{AY} = \frac{80/3 \text{ N}}{10^5 \text{ N}} = \frac{80}{3 \times 10^5} = \frac{8}{3} \times 10^{-4}. ϵ22.667×104\epsilon_2 \approx 2.667 \times 10^{-4}.