Solveeit Logo

Question

Question: $|a| = \sqrt{3}, |b| = 5, b.c = 10$ and angle between b and c is $\frac{\pi}{3}$. If a is perpendicu...

a=3,b=5,b.c=10|a| = \sqrt{3}, |b| = 5, b.c = 10 and angle between b and c is π3\frac{\pi}{3}. If a is perpendicular to b×cb \times c, then the value of a×(b×c)|a \times (b \times c)| is

A

10310\sqrt{3}

B

15

C

30

D

10

Answer

30

Explanation

Solution

Solution:

We are given:

  • a=3,b=5|a| = \sqrt{3}, |b| = 5
  • The dot product bc=10b \cdot c = 10
  • The angle between bb and cc is π3\frac{\pi}{3}.

Since bc=bccos(π3)b \cdot c = |b||c| \cos(\frac{\pi}{3}), we have:

10=5c(12)10 = 5 \cdot |c| \cdot (\frac{1}{2})
c=10×25=4|c| = \frac{10 \times 2}{5} = 4

Compute b×c|b \times c| using:

b×c=bcsin(π3)=54(32)=103|b \times c| = |b||c| \sin(\frac{\pi}{3}) = 5 \cdot 4 \cdot (\frac{\sqrt{3}}{2}) = 10\sqrt{3}

Given a(b×c)a \perp (b \times c), we have:

a×(b×c)=ab×c=3103=30|a \times (b \times c)| = |a| \cdot |b \times c| = \sqrt{3} \cdot 10\sqrt{3} = 30

Answer: Option (c) 30