Question
Question: In a tetrahedron OABC, the edges are of lengths, |OA| = |BC| = a, |OB| = |AC| = b, |OC| = |AB| = c. ...
In a tetrahedron OABC, the edges are of lengths, |OA| = |BC| = a, |OB| = |AC| = b, |OC| = |AB| = c. Let G₁ and G₂ be the centroids of the triangle ABC and AOC such that OG1⊥BG2, then the value of b2a2+c2 is (O being origin)

2
3
6
9
3
Solution
The position vectors of the vertices of the tetrahedron OABC, with O as the origin, are 0, a, b, and c respectively.
The lengths of the edges are given as:
∣OA∣=∣a∣=a
∣OB∣=∣b∣=b
∣OC∣=∣c∣=c
∣BC∣=∣c−b∣=a
∣AC∣=∣c−a∣=b
∣AB∣=∣b−a∣=c
From the squared magnitudes of the difference vectors, we can find the dot products of the position vectors:
∣c−b∣2=a2⟹(c−b)⋅(c−b)=a2⟹∣c∣2−2b⋅c+∣b∣2=a2⟹c2−2b⋅c+b2=a2
Thus, 2b⋅c=b2+c2−a2.
∣c−a∣2=b2⟹(c−a)⋅(c−a)=b2⟹∣c∣2−2a⋅c+∣a∣2=b2⟹c2−2a⋅c+a2=b2
Thus, 2a⋅c=a2+c2−b2.
∣b−a∣2=c2⟹(b−a)⋅(b−a)=c2⟹∣b∣2−2a⋅b+∣a∣2=c2⟹b2−2a⋅b+a2=c2
Thus, 2a⋅b=a2+b2−c2.
G1 is the centroid of triangle ABC. Its position vector is g1=3a+b+c.
G2 is the centroid of triangle AOC. Its position vector is g2=30+a+c=3a+c.
We are given that OG1⊥BG2. The vector OG1 is g1−0=g1. The vector BG2 is g2−b.
The condition of perpendicularity is g1⋅(g2−b)=0.
Substitute the expressions for g1 and g2:
(3a+b+c)⋅(3a+c−b)=0
(3a+b+c)⋅(3a+c−3b)=0
91(a+b+c)⋅(a+c−3b)=0
(a+b+c)⋅(a+c−3b)=0
Expand the dot product:
a⋅(a+c−3b)+b⋅(a+c−3b)+c⋅(a+c−3b)=0
(a⋅a+a⋅c−3a⋅b)+(b⋅a+b⋅c−3b⋅b)+(c⋅a+c⋅c−3c⋅b)=0
∣a∣2+a⋅c−3a⋅b+a⋅b+b⋅c−3∣b∣2+a⋅c+∣c∣2−3b⋅c=0
∣a∣2+∣c∣2−3∣b∣2+2a⋅c−2a⋅b−2b⋅c=0
Substitute the values of ∣a∣2, ∣b∣2, ∣c∣2 and the expressions for the dot products:
a2+c2−3b2+(a2+c2−b2)−(a2+b2−c2)−(b2+c2−a2)=0
a2+c2−3b2+a2+c2−b2−a2−b2+c2−b2−c2+a2=0
Combine terms:
(a2+a2−a2+a2)+(−3b2−b2−b2−b2)+(c2+c2+c2−c2)=0
2a2−6b2+2c2=0
Divide by 2:
a2−3b2+c2=0
Rearrange the terms to find the required ratio:
a2+c2=3b2
b2a2+c2=3