Solveeit Logo

Question

Question: In a tetrahedron OABC, the edges are of lengths, |OA| = |BC| = a, |OB| = |AC| = b, |OC| = |AB| = c. ...

In a tetrahedron OABC, the edges are of lengths, |OA| = |BC| = a, |OB| = |AC| = b, |OC| = |AB| = c. Let G₁ and G₂ be the centroids of the triangle ABC and AOC such that OG1BG2OG_1 \perp BG_2, then the value of a2+c2b2\frac{a^2+c^2}{b^2} is (O being origin)

A

2

B

3

C

6

D

9

Answer

3

Explanation

Solution

The position vectors of the vertices of the tetrahedron OABC, with O as the origin, are 0\vec{0}, a\vec{a}, b\vec{b}, and c\vec{c} respectively.

The lengths of the edges are given as:

OA=a=a|OA| = |\vec{a}| = a

OB=b=b|OB| = |\vec{b}| = b

OC=c=c|OC| = |\vec{c}| = c

BC=cb=a|BC| = |\vec{c} - \vec{b}| = a

AC=ca=b|AC| = |\vec{c} - \vec{a}| = b

AB=ba=c|AB| = |\vec{b} - \vec{a}| = c

From the squared magnitudes of the difference vectors, we can find the dot products of the position vectors:

cb2=a2    (cb)(cb)=a2    c22bc+b2=a2    c22bc+b2=a2|\vec{c} - \vec{b}|^2 = a^2 \implies (\vec{c} - \vec{b}) \cdot (\vec{c} - \vec{b}) = a^2 \implies |\vec{c}|^2 - 2\vec{b} \cdot \vec{c} + |\vec{b}|^2 = a^2 \implies c^2 - 2\vec{b} \cdot \vec{c} + b^2 = a^2

Thus, 2bc=b2+c2a22\vec{b} \cdot \vec{c} = b^2 + c^2 - a^2.

ca2=b2    (ca)(ca)=b2    c22ac+a2=b2    c22ac+a2=b2|\vec{c} - \vec{a}|^2 = b^2 \implies (\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{a}) = b^2 \implies |\vec{c}|^2 - 2\vec{a} \cdot \vec{c} + |\vec{a}|^2 = b^2 \implies c^2 - 2\vec{a} \cdot \vec{c} + a^2 = b^2

Thus, 2ac=a2+c2b22\vec{a} \cdot \vec{c} = a^2 + c^2 - b^2.

ba2=c2    (ba)(ba)=c2    b22ab+a2=c2    b22ab+a2=c2|\vec{b} - \vec{a}|^2 = c^2 \implies (\vec{b} - \vec{a}) \cdot (\vec{b} - \vec{a}) = c^2 \implies |\vec{b}|^2 - 2\vec{a} \cdot \vec{b} + |\vec{a}|^2 = c^2 \implies b^2 - 2\vec{a} \cdot \vec{b} + a^2 = c^2

Thus, 2ab=a2+b2c22\vec{a} \cdot \vec{b} = a^2 + b^2 - c^2.

G1G_1 is the centroid of triangle ABC. Its position vector is g1=a+b+c3\vec{g_1} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}.

G2G_2 is the centroid of triangle AOC. Its position vector is g2=0+a+c3=a+c3\vec{g_2} = \frac{\vec{0} + \vec{a} + \vec{c}}{3} = \frac{\vec{a} + \vec{c}}{3}.

We are given that OG1BG2OG_1 \perp BG_2. The vector OG1OG_1 is g10=g1\vec{g_1} - \vec{0} = \vec{g_1}. The vector BG2BG_2 is g2b\vec{g_2} - \vec{b}.

The condition of perpendicularity is g1(g2b)=0\vec{g_1} \cdot (\vec{g_2} - \vec{b}) = 0.

Substitute the expressions for g1\vec{g_1} and g2\vec{g_2}:

(a+b+c3)(a+c3b)=0\left(\frac{\vec{a} + \vec{b} + \vec{c}}{3}\right) \cdot \left(\frac{\vec{a} + \vec{c}}{3} - \vec{b}\right) = 0

(a+b+c3)(a+c3b3)=0\left(\frac{\vec{a} + \vec{b} + \vec{c}}{3}\right) \cdot \left(\frac{\vec{a} + \vec{c} - 3\vec{b}}{3}\right) = 0

19(a+b+c)(a+c3b)=0\frac{1}{9} (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{c} - 3\vec{b}) = 0

(a+b+c)(a+c3b)=0(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{c} - 3\vec{b}) = 0

Expand the dot product:

a(a+c3b)+b(a+c3b)+c(a+c3b)=0\vec{a} \cdot (\vec{a} + \vec{c} - 3\vec{b}) + \vec{b} \cdot (\vec{a} + \vec{c} - 3\vec{b}) + \vec{c} \cdot (\vec{a} + \vec{c} - 3\vec{b}) = 0

(aa+ac3ab)+(ba+bc3bb)+(ca+cc3cb)=0(\vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{c} - 3\vec{a} \cdot \vec{b}) + (\vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} - 3\vec{b} \cdot \vec{b}) + (\vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{c} - 3\vec{c} \cdot \vec{b}) = 0

a2+ac3ab+ab+bc3b2+ac+c23bc=0|\vec{a}|^2 + \vec{a} \cdot \vec{c} - 3\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} - 3|\vec{b}|^2 + \vec{a} \cdot \vec{c} + |\vec{c}|^2 - 3\vec{b} \cdot \vec{c} = 0

a2+c23b2+2ac2ab2bc=0|\vec{a}|^2 + |\vec{c}|^2 - 3|\vec{b}|^2 + 2\vec{a} \cdot \vec{c} - 2\vec{a} \cdot \vec{b} - 2\vec{b} \cdot \vec{c} = 0

Substitute the values of a2|\vec{a}|^2, b2|\vec{b}|^2, c2|\vec{c}|^2 and the expressions for the dot products:

a2+c23b2+(a2+c2b2)(a2+b2c2)(b2+c2a2)=0a^2 + c^2 - 3b^2 + (a^2 + c^2 - b^2) - (a^2 + b^2 - c^2) - (b^2 + c^2 - a^2) = 0

a2+c23b2+a2+c2b2a2b2+c2b2c2+a2=0a^2 + c^2 - 3b^2 + a^2 + c^2 - b^2 - a^2 - b^2 + c^2 - b^2 - c^2 + a^2 = 0

Combine terms:

(a2+a2a2+a2)+(3b2b2b2b2)+(c2+c2+c2c2)=0(a^2 + a^2 - a^2 + a^2) + (-3b^2 - b^2 - b^2 - b^2) + (c^2 + c^2 + c^2 - c^2) = 0

2a26b2+2c2=02a^2 - 6b^2 + 2c^2 = 0

Divide by 2:

a23b2+c2=0a^2 - 3b^2 + c^2 = 0

Rearrange the terms to find the required ratio:

a2+c2=3b2a^2 + c^2 = 3b^2

a2+c2b2=3\frac{a^2 + c^2}{b^2} = 3