Solveeit Logo

Question

Physics Question on Electrostatics

A 200-turn circular coil of area 103cm2 rotates at 60 revolutions per minute in a uniform magnetic field of 0.02 T perpendicular to the axis of rotation of the coil. The maximum voltage induced in the coil is:

A

2πV5\quad \frac{2\pi V}{5} \\\\

B

πV4\quad \frac{\pi V}{4} \\\\

C

4πV5\quad \frac{4\pi V}{5} \\\\

D

12πV5\quad \frac{12\pi V}{5}

Answer

4πV5\quad \frac{4\pi V}{5} \\\\

Explanation

Solution

The maximum induced EMF in a rotating coil is given by the formula:
εmax = NABω
where:- N is the number of turns of the coil, A is the area of the coil in square meters, B is the magnetic field in Tesla, ω is the angular velocity in radians per second.

Given values: N=200,A=103cm2=101m2,B=0.02T,ω=2π×\text{Given values: } N = 200, \, A = 10^3 \, \text{cm}^2 = 10^{-1} \, \text{m}^2, \, B = 0.02 \, \text{T}, \, \omega = 2\pi \times 6060=2πrad/s.\frac{60}{60} = 2\pi \, \text{rad/s}.\\\\
Substituting the values into the formula:\text{Substituting the values into the formula:}

εmax=200×101×0.02×2π=4πV5\varepsilon_{\text{max}} = 200 \times 10^{-1} \times 0.02 \times 2\pi = \frac{4\pi V}{5}

Thus, the maximum voltage induced in the coil is 4πV5, which corresponds to Option (3).\text{Thus, the maximum voltage induced in the coil is } \frac{4\pi V}{5}, \text{ which corresponds to Option (3).}